7 resultados para Biology, Bioinformatics|Computer Science
em Universidad Politécnica de Madrid
Resumo:
This paper analyzes the relationship among research collaboration, number of documents and number of citations of computer science research activity. It analyzes the number of documents and citations and how they vary by number of authors. They are also analyzed (according to author set cardinality) under different circumstances, that is, when documents are written in different types of collaboration, when documents are published in different document types, when documents are published in different computer science subdisciplines, and, finally, when documents are published by journals with different impact factor quartiles. To investigate the above relationships, this paper analyzes the publications listed in the Web of Science and produced by active Spanish university professors between 2000 and 2009, working in the computer science field. Analyzing all documents, we show that the highest percentage of documents are published by three authors, whereas single-authored documents account for the lowest percentage. By number of citations, there is no positive association between the author cardinality and citation impact. Statistical tests show that documents written by two authors receive more citations per document and year than documents published by more authors. In contrast, results do not show statistically significant differences between documents published by two authors and one author. The research findings suggest that international collaboration results on average in publications with higher citation rates than national and institutional collaborations. We also find differences regarding citation rates between journals and conferences, across different computer science subdisciplines and journal quartiles as expected. Finally, our impression is that the collaborative level (number of authors per document) will increase in the coming years, and documents published by three or four authors will be the trend in computer science literature.
Resumo:
The present work is focused on studying two issues: the “teamwork” generic competence and the “academic motivation”. Currently the professional profile of engineers has a strong component of teamwork. On the other hand, motivational profile of students determines their tendencies when they come to work in team, as well as their performance at work. In this context we suggest four hypotheses: (H1) students improve their teamwork capacity by specific training and carrying out a set of activities integrated into an active learning process; (H2) students with higher mastery motivation have better attitude towards team working; (H3) students with higher mastery motivation obtain better results in academic performance; and (H4) students show different motivation profiles in different circumstances: type of courses, teaching methodologies, different times of the learning process. This study was carried out with computer science engineering students from two Spanish universities. The first results point to an improvement in teamwork competence of students if they have previously received specific training in facets of that competence. Other results indicate that there is a correlation between the motivational profiles of students and their perception about teamwork competence. Finally, and contrary to the initial hypothesis, these profiles appear to not influence significantly the academic performance of students.
Resumo:
The present work is aimed at discussing several issues related to the teamwork generic competence, motivational profiles and academic performance. In particular, we study the improvement of teamwork attitude, the predominant types of motivation in different contexts and some correlations among these three components of the learning process. The above-mentioned aspects are of great importance. Currently, the professional profile of engineers has a strong teamwork component and the motivational profile of students determines both their tendencies when they come to work as part of a team, as well as their performance at work. Taking these issues into consideration, we suggest four hypotheses: (H1) students improve their teamwork capacity through specific training and carrying out of a set of activities integrated into an active learning process; (H2) students with higher mastery motivation have a better attitude towards teamwork; (H3) students with different types of motivations reach different levels of academic performance; and (H4) students show different motivation profiles in different circumstances: type of courses, teaching methodologies, different times of the learning process. This study was carried out with Computer Science Engineering students from two Spanish universities. The first results point to an improvement in teamwork competence of students if they have previously received specific training in facets of that competence. Other results indicate that there is a correlation between the motivational profiles of students and their perception of teamwork competence. Finally, results point to a clear relationship between some kind of motivation and academic performance. In particular, four kinds of motivation are analyzed and students are classified into two groups according to them. After analyzing several marks obtained in compulsory courses, we perceive that those students that show higher motivation for avoiding failure obtain, in general, worse academic performance.
Resumo:
There is general agreement within the scientific community in considering Biology as the science with more potential to develop in the XXI century. This is due to several reasons, but probably the most important one is the state of development of the rest of experimental and technological sciences. In this context, there are a very rich variety of mathematical tools, physical techniques and computer resources that permit to do biological experiments that were unbelievable only a few years ago. Biology is nowadays taking advantage of all these newly developed technologies, which are been applied to life sciences opening new research fields and helping to give new insights in many biological problems. Consequently, biologists have improved a lot their knowledge in many key areas as human function and human diseases. However there is one human organ that is still barely understood compared with the rest: The human brain. The understanding of the human brain is one of the main challenges of the XXI century. In this regard, it is considered a strategic research field for the European Union and the USA. Thus, there is a big interest in applying new experimental techniques for the study of brain function. Magnetoencephalography (MEG) is one of these novel techniques that are currently applied for mapping the brain activity1. This technique has important advantages compared to the metabolic-based brain imagining techniques like Functional Magneto Resonance Imaging2 (fMRI). The main advantage is that MEG has a higher time resolution than fMRI. Another benefit of MEG is that it is a patient friendly clinical technique. The measure is performed with a wireless set up and the patient is not exposed to any radiation. Although MEG is widely applied in clinical studies, there are still open issues regarding data analysis. The present work deals with the solution of the inverse problem in MEG, which is the most controversial and uncertain part of the analysis process3. This question is addressed using several variations of a new solving algorithm based in a heuristic method. The performance of those methods is analyzed by applying them to several test cases with known solutions and comparing those solutions with the ones provided by our methods.
Resumo:
Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.
Resumo:
Las Redes de Procesadores Evolutivos-NEP propuestas en [Mitrana et al., 2001], son un modelo computacional bio-inspirado a partir de la evolución de poblaciones de células, definiendo a nivel sintáctico algunas propiedades biológicas. En este modelo, las células están representadas por medio de palabras que describen secuencias de ADN. Informalmente, en algún instante de tiempo, el sistema evolutivo está representado por una colección de palabras cada una de las cuales representa una célula. El espacio genotipo de las especies, es un conjunto que recoge aquellas palabras que son aceptadas como sobrevivientes (es decir, como \correctas"). Desde el punto de vista de la evolución, las células pertenecen a especies y su comunidad evoluciona de acuerdo a procesos biológicos como la mutación y la división celular. éstos procesos representan el proceso natural de evolución y ponen de manifiesto una característica intrínseca de la naturaleza: el paralelismo. En este modelo, estos procesos son vistos como operaciones sobre palabras. Formalmente, el modelo de las NEP constituyen una arquitectura paralela y distribuida de procesamiento simbólico inspirada en la Máquina de conexión [Hillis, 1981], en el Paradigma de Flujo Lógico [Errico and Jesshope, 1994] y en las Redes de Procesadores Paralelos de Lenguajes (RPPL) [Csuhaj-Varju and Salomaa, 1997]. Al modelo NEP se han ido agregando nuevas y novedosas extensiones hasta el punto que actualmente podemos hablar de una familia de Redes de Procesadores Bio-inspirados (NBP) [Mitrana et al., 2012b]. Un considerable número de trabajos a lo largo de los últimos años han demostrado la potencia computacional de la familia NBP. En general, éstos modelos son computacionalmente completos, universales y eficientes [Manea et al., 2007], [Manea et al., 2010b], [Mitrana and Martín-Vide, 2005]. De acuerdo a lo anterior, se puede afirmar que el modelo NEP ha adquirido hasta el momento un nivel de madurez considerable. Sin embargo, aunque el modelo es de inspiración biológica, sus metas siguen estando motivadas en la Teoría de Lenguajes Formales y las Ciencias de la Computación. En este sentido, los aspectos biológicos han sido abordados desde una perspectiva cualitativa y el acercamiento a la realidad biológica es de forma meramente sintáctica. Para considerar estos aspectos y lograr dicho acercamiento es necesario que el modelo NEP tenga una perspectiva más amplia que incorpore la interacción de aspectos tanto cualitativos como cuantitativos. La contribución de esta Tesis puede considerarse como un paso hacia adelante en una nueva etapa de los NEPs, donde el carácter cuantitativo del modelo es de primordial interés y donde existen posibilidades de un cambio visible en el enfoque de interés del dominio de los problemas a considerar: de las ciencias de la computación hacia la simulación/modelado biológico y viceversa, entre otros. El marco computacional que proponemos en esta Tesis extiende el modelo de las Redes de Procesadores Evolutivos (NEP) y define arquitectura inspirada en la definición de bloques funcionales del proceso de señalización celular para la solución de problemas computacionales complejos y el modelado de fenómenos celulares desde una perspectiva discreta. En particular, se proponen dos extensiones: (1) los Transductores basados en Redes de Procesadores Evolutivos (NEPT), y (2) las Redes Parametrizadas de Procesadores Evolutivos Polarizados (PNPEP). La conservación de las propiedades y el poder computacional tanto de NEPT como de PNPEP se demuestra formalmente. Varias simulaciones de procesos relacionados con la señalización celular son abordadas sintáctica y computacionalmente, con el _n de mostrar la aplicabilidad e idoneidad de estas dos extensiones. ABSTRACT Network of Evolutionary Processors -NEP was proposed in [Mitrana et al., 2001], as a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. In this model, cells are represented by words which encode their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a collection of words, where each word represents one cell. Cells belong to species and their community evolves according to mutations and division which are defined by operations on words. Only those cells accepted as survivors (correct) are represented by a word in a given set of words, called the genotype space of the species. This feature is analogous with the natural process of evolution. Formally, NEP is based on an architecture for parallel and distributed processing inspired from the Connection Machine [Hillis, 1981], the Flow Logic Paradigm [Errico and Jesshope, 1994] and the Networks of Parallel Language Processors (RPPL) [Csuhaj-Varju and Salomaa, 1997]. Since the date when NEP was proposed, several extensions and variants have appeared engendering a new set of models named Networks of Bio-inspired Processors (NBP) [Mitrana et al., 2012b]. During this time, several works have proved the computational power of NBP. Specifically, their efficiency, universality, and computational completeness have been thoroughly investigated [Manea et al., 2007, Manea et al., 2010b, Mitrana and Martín-Vide, 2005]. Therefore, we can say that the NEP model has reached its maturity. Nevertheless, although the NEP model is biologically inspired, this model is mainly motivated by mathematical and computer science goals. In this context, the biological aspects are only considered from a qualitative and syntactical perspective. In view of this lack, it is important to try to keep the NEP theory as close as possible to the biological reality, extending their perspective incorporating the interplay of qualitative and quantitative aspects. The contribution of this Thesis, can be considered as a starting point in a new era of the NEP model. Then, the quantitative character of the NEP model is mandatory and it can address completely new different types of problems with respect to the classical computational domain (e.g. from the computer science to system biology). Therefore, the computational framework that we propose extends the NEP model and defines an architecture inspired by the functional blocks from cellular signaling in order to solve complex computational problems and cellular phenomena modeled from a discrete perspective. Particularly, we propose two extensions, namely: (1) Transducers based on Network of Evolutionary Processors (NEPT), and (2) Parametrized Network of Polarized Evolutionary Processors (PNPEP). Additionally, we have formally proved that the properties and computational power of NEP is kept in both extensions. Several simulations about processes related with cellular signaling both syntactical and computationally have been considered to show the model suitability.
Resumo:
Situado en el límite entre Ingeniería, Informática y Biología, la mecánica computacional de las neuronas aparece como un nuevo campo interdisciplinar que potencialmente puede ser capaz de abordar problemas clínicos desde una perspectiva diferente. Este campo es multiescala por naturaleza, yendo desde la nanoescala (como, por ejemplo, los dímeros de tubulina) a la macroescala (como, por ejemplo, el tejido cerebral), y tiene como objetivo abordar problemas que son complejos, y algunas veces imposibles, de estudiar con medios experimentales. La modelización computacional ha sido ampliamente empleada en aplicaciones Neurocientíficas tan diversas como el crecimiento neuronal o la propagación de los potenciales de acción compuestos. Sin embargo, en la mayoría de los enfoques de modelización hechos hasta ahora, la interacción entre la célula y el medio/estímulo que la rodea ha sido muy poco explorada. A pesar de la tremenda importancia de esa relación en algunos desafíos médicos—como, por ejemplo, lesiones traumáticas en el cerebro, cáncer, la enfermedad del Alzheimer—un puente que relacione las propiedades electrofisiológicas-químicas y mecánicas desde la escala molecular al nivel celular todavía no existe. Con ese objetivo, esta investigación propone un marco computacional multiescala particularizado para dos escenarios respresentativos: el crecimiento del axón y el acomplamiento electrofisiológicomecánico de las neuritas. En el primer caso, se explora la relación entre los constituyentes moleculares del axón durante su crecimiento y sus propiedades mecánicas resultantes, mientras que en el último, un estímulo mecánico provoca deficiencias funcionales a nivel celular como consecuencia de sus alteraciones electrofisiológicas-químicas. La modelización computacional empleada en este trabajo es el método de las diferencias finitas, y es implementada en un nuevo programa llamado Neurite. Aunque el método de los elementos finitos es también explorado en parte de esta investigación, el método de las diferencias finitas tiene la flexibilidad y versatilidad necesaria para implementar mode los biológicos, así como la simplicidad matemática para extenderlos a simulaciones a gran escala con un coste computacional bajo. Centrándose primero en el efecto de las propiedades electrofisiológicas-químicas sobre las propiedades mecánicas, una versión adaptada de Neurite es desarrollada para simular la polimerización de los microtúbulos en el crecimiento del axón y proporcionar las propiedades mecánicas como función de la ocupación de los microtúbulos. Después de calibrar el modelo de crecimiento del axón frente a resultados experimentales disponibles en la literatura, las características mecánicas pueden ser evaluadas durante la simulación. Las propiedades mecánicas del axón muestran variaciones dramáticas en la punta de éste, donde el cono de crecimiento soporta las señales químicas y mecánicas. Bansándose en el conocimiento ganado con el modelo de diferencias finitas, y con el objetivo de ir de 1D a 3D, este esquema preliminar pero de una naturaleza innovadora allana el camino a futuros estudios con el método de los elementos finitos. Centrándose finalmente en el efecto de las propiedades mecánicas sobre las propiedades electrofisiológicas- químicas, Neurite es empleado para relacionar las cargas mecánicas macroscópicas con las deformaciones y velocidades de deformación a escala microscópica, y simular la propagación de la señal eléctrica en las neuritas bajo carga mecánica. Las simulaciones fueron calibradas con resultados experimentales publicados en la literatura, proporcionando, por tanto, un modelo capaz de predecir las alteraciones de las funciones electrofisiológicas neuronales bajo cargas externas dañinas, y uniendo lesiones mecánicas con las correspondientes deficiencias funcionales. Para abordar simulaciones a gran escala, aunque otras arquitecturas avanzadas basadas en muchos núcleos integrados (MICs) fueron consideradas, los solvers explícito e implícito se implementaron en unidades de procesamiento central (CPU) y unidades de procesamiento gráfico (GPUs). Estudios de escalabilidad fueron llevados acabo para ambas implementaciones mostrando resultados prometedores para casos de simulaciones extremadamente grandes con GPUs. Esta tesis abre la vía para futuros modelos mecánicos con el objetivo de unir las propiedades electrofisiológicas-químicas con las propiedades mecánicas. El objetivo general es mejorar el conocimiento de las comunidades médicas y de bioingeniería sobre la mecánica de las neuronas y las deficiencias funcionales que aparecen de los daños producidos por traumatismos mecánicos, como lesiones traumáticas en el cerebro, o enfermedades neurodegenerativas como la enfermedad del Alzheimer. ABSTRACT Sitting at the interface between Engineering, Computer Science and Biology, Computational Neuron Mechanics appears as a new interdisciplinary field potentially able to tackle clinical problems from a new perspective. This field is multiscale by nature, ranging from the nanoscale (e.g., tubulin dimers) to the macroscale (e.g., brain tissue), and aims at tackling problems that are complex, and sometime impossible, to study through experimental means. Computational modeling has been widely used in different Neuroscience applications as diverse as neuronal growth or compound action potential propagation. However, in the majority of the modeling approaches done in this field to date, the interactions between the cell and its surrounding media/stimulus have been rarely explored. Despite of the tremendous importance of such relationship in several medical challenges—e.g., traumatic brain injury (TBI), cancer, Alzheimer’s disease (AD)—a bridge between electrophysiological-chemical and mechanical properties of neurons from the molecular scale to the cell level is still lacking. To this end, this research proposes a multiscale computational framework particularized for two representative scenarios: axon growth and electrophysiological-mechanical coupling of neurites. In the former case, the relation between the molecular constituents of the axon during its growth and its resulting mechanical properties is explored, whereas in the latter, a mechanical stimulus provokes functional deficits at cell level as a consequence of its electrophysiological-chemical alterations. The computational modeling approach chosen in this work is the finite difference method (FDM), and was implemented in a new program called Neurite. Although the finite element method (FEM) is also explored as part of this research, the FDM provides the necessary flexibility and versatility to implement biological models, as well as the mathematical simplicity to extend them to large scale simulations with a low computational cost. Focusing first on the effect of electrophysiological-chemical properties on the mechanical proper ties, an adaptation of Neurite was developed to simulate microtubule polymerization in axonal growth and provide the axon mechanical properties as a function of microtubule occupancy. After calibrating the axon growth model against experimental results available in the literature, the mechanical characteristics can be tracked during the simulation. The axon mechanical properties show dramatic variations at the tip of the axon, where the growth cone supports the chemical and mechanical signaling. Based on the knowledge gained from the FDM scheme, and in order to go from 1D to 3D, this preliminary yet novel scheme paves the road for future studies with FEM. Focusing then on the effect of mechanical properties on the electrophysiological-chemical properties, Neurite was used to relate macroscopic mechanical loading to microscopic strains and strain rates, and simulate the electrical signal propagation along neurites under mechanical loading. The simulations were calibrated against experimental results published in the literature, thus providing a model able to predict the alteration of neuronal electrophysiological function under external damaging load, and linking mechanical injuries to subsequent acute functional deficits. To undertake large scale simulations, although other state-of-the-art architectures based on many integrated cores (MICs) were considered, the explicit and implicit solvers were implemented for central processing units (CPUs) and graphics processing units (GPUs). Scalability studies were done for both implementations showing promising results for extremely large scale simulations with GPUs. This thesis opens the avenue for future mechanical modeling approaches aimed at linking electrophysiological- chemical properties to mechanical properties. Its overarching goal is to enhance the bioengineering and medical communities knowledge on neuronal mechanics and functional deficits arising from damages produced by direct mechanical insults, such as TBI, or neurodegenerative evolving illness, such as AD.