3 resultados para Bi-Sr-Ca-Cu-O

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ternary Cu(Sb,Bi)S2 semiconductors are a group of materials with a wide variety of applications, especially photovoltaic. An analysis of the structural, electronic, and optical properties obtained from first-principles is presented. The microscopic justification of the high absorption coefficients is carried out by splitting the optical properties on chemical species contributions according to the symmetry. Focusing on photovoltaic applications, and from first-principles results, the efficiencies for several solar spectra are obtained as a function of the device thickness. This study indicates the great potential of these materials for photovoltaic and other optical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elemental composition, patterns of distribution and possible sources of street dust are not common to all urban environments, but vary according to the peculiarities of each city. The common features and dissimilarities in the origin and nature of street dust were investigated through a series of studies in two widely different cities, Madrid (Spain) and Oslo (Norway), between 1990 and 1994. The most comprehensive sampling campaign was carried out in the Norwegian capital during the summer of 1994. An area of 14 km2, covering most of downtown Oslo and some residential districts to the north of the city, was divided into 1 km2 mapping units, and 16 sampling increments of approximately 150 g were collected from streets and roads in each of them. The fraction below 100 μm was acid-digested and analysed by ICP-MS. Statistical analyses of the results suggest that chemical elements in street dust can be classified into three groups: “urban” elements (Ba, Cd, Co, Cu, Mg, Pb, Sb, Ti, Zn), “natural” elements (Al, Ga, La, Mn, Na, Sr, Th, Y) and elements of a mixed origin or which have undergone geochemical changes from their original sources (Ca, Cs, Fe, Mo, Ni, Rb, Sr, U). Soil resuspension and/or mobilisation appears to be the most important source of “natural” elements, while “urban” elements originate primarily from traffic and from the weathering and corrosion of building materials. The data for Pb seem to prove that the gradual shift from leaded to unleaded petrol as fuel for automobiles has resulted in an almost proportional reduction in the concentration of Pb in dust particles under 100 μm. This fact and the spatial distribution of Pb in the city strongly suggest that lead sources other than traffic (i.e. lead accumulated in urban soil over the years) may contribute as much lead, if not more, to urban street dust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ca-amendments are routinely applied to improve acid soils, whilst no-tillage (NT) has been widely recommended in soils where traditional tillage (TT) has led to losses of organic matter. However, the potential interactions between the two treatments are only partially known. Our study was conducted on an annual forage crop agrosystem with a degraded Palexerult soil located in SW Spain, in order to assess if the combination of NT plus a Ca-amendment provides additional benefits to those of their separate use. To this end we analysed the effects of four different combinations of tillage and Ca-amendment on selected key soil properties, focusing on their relationships. The experimental design was a split-plot with four replicates. The main factor was tillage (NT versus TT) and the second factor was the application or not of a Ca-amendment, consisting of a mixture of sugar foam (SF) and red gypsum (RG). Soil samples were collected from 3 soil layers down to 50 cm after four years of treatment (2009). The use of the Ca-amendment improved pH and Al-toxicity down to 25 cm and increased exchangeable Ca2+ down to 50 cm, even under NT due to the combined effect of SF and RG. Both NT and the Ca-amendment had a beneficial effect on total organic carbon (TOC), especially on particulate organic carbon (POC), in the 0–5 cm layer, with the highest contents observed when both practices were combined. Unlike NT, the Ca-amendment failed to improve soil aggregation in spite of the carbon supplied. This carbon was not protected within the stable aggregates in the medium term, making it more susceptible to mineralization. We suggest that the fraction of Al extracted by oxalate from solid phase (AlOxa-Cu-K) and the glomalin-related soil proteins (GRSPs) are involved in the accumulation of carbon within water stable aggregates, probably through the formation of non-toxic stable Al-OM compounds, including those formed with GRSPs. NT alone decreased AlK in the 0–5 cm soil layer, possibly by increasing POC, TOC and GRSPs, which were observed to play a role in reducing Al toxicity. From our findings, the combination of NT and Ca-amendment appears to be the best management practice to improve chemical and physical characteristics of acid soils degraded by tillage.