11 resultados para Bending tone
em Universidad Politécnica de Madrid
Resumo:
In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators’ control in terms of actuation speed and position accuracy is also addressed.
Resumo:
The analysis of modes and natural frequencies is of primary interest in the computation of the response of bridges. In this article the transfer matrix method is applied to this problem to provide a computer code to calculate the natural frequencies and modes of bridge-like structures. The Fortran computer code is suitable for running on small computers and results are presented for a railway bridge.
Resumo:
The authors present a very interesting criterion for choosing a rectangular foundation.The writers should like to point out that the obtention of minimum area can be reduced to the problem of finding the minimum of x*+y*, subjected to the condition x*.y*=k2 whose solution is evidently x*=y*=k
Resumo:
This paper deals with the assessment of the contribution of the second bending mode to the dynamic behavior of simply supported railway bridges. Traditionally the contributions of modes higher than the fundamental have been considered of little importance for the computation of the magnitudes of interest to structural engineers (vertical deflections, bending moments, etc.). Starting from the dimensionless equations of motion of a simply supported beam subjected to moving loads, the key parameters governing the dynamic behavior are identified. Then, a parametric study over realistic ranges of values of those parameters is conducted, and the influence of the second mode examined in detail. The main purpose is to decide whether the second mode should be taken into account for the determination of the maximum displacement and acceleration in high-speed bridges. In addition, the reasons that cause the contribution of the second bending mode to be relevant in some situations are highlighted, particularly with regard to the computation of the maximum acceleration.
Resumo:
Two different methods of analysis of plate bending, FEM and BM are discussed in this paper. The plate behaviour is assumed to be represented by using the linear thin plate theory where the Poisson-Kirchoff assumption holds. The BM based in a weighted mean square error technique produced good results for the problem of plate bending. The computational effort demanded in the BM is smaller than the one needed in a FEM analysis for the same level of accuracy. The general application of the FEM cannot be matched by the BM. Particularly, different types of geometry (plates of arbitrary geometry) need a similar but not identical treatment in the BM. However, this loss of generality is counterbalanced by the computational efficiency gained in the BM in the solution achievement
Resumo:
The possibilities and limitations of high order hyperelements in plate bending analysis are discussed. Explicit shape functions for some types of triangular elements are given. These elements are applied to simple cases to assess their computational efficiency.
Resumo:
After a short introduction the possibilities and limitations of polynomial simple elements with C1 continuity are discussed with reference to plate bending analysis. A family of this kind of elements is presented.. These elements are applied to simple cases in order to assess their computational efficiency. Finally some conclusions are shown, and future research is also proposed.
Resumo:
En el presente trabajo se lleva a cabo un estudio basado en datos obtenidos experimentalmente mediante el ensayo a flexión de vigas de madera de pino silvestre reforzadas con materiales compuestos. Las fibras que componen los tejidos utilizados para la ejecución de los refuerzos son de basalto y de carbono. En el caso de los compuestos de fibra de basalto se aplican en distintos gramajes, y los de carbono en tejido unidireccional y bidireccional. El material compuesto se realizó in situ, simultáneamente a la ejecución del refuerzo. Se aplicaron en una y en dos capas, según el caso, y la forma de colocación fue en ?U?, adhiriéndose al canto inferior y a las caras laterales de la viga mediante resina o mortero epoxi. Se analiza el comportamiento de las vigas según las variables de refuerzo aplicadas y se comparan con los resultados de vigas ensayadas sin reforzar. Con este trabajo queda demostrado el buen funcionamiento del FRP de fibra de basalto aplicado en el refuerzo de vigas de madera y de los tejidos de carbono bidireccionales con respecto a los unidireccionales.
Resumo:
It is common to find structures that need to be reinforced due to deterioration or because the function of the building changes. The economic cost involved in these forms of interventions is considerable. Therefore, it is interesting to progress in the existing strengthening techniques and the study of new reinforcement systems. This paper analyses the behaviour of timber beams reinforced with carbon and basalt fiber composite materials. The main objective of this study is to test the stiffness increase produced by the carbon and basalt FRP on reinforced beams. The results show the stiffness increase produced by the different types of reinforcement.
Resumo:
The paper reports on a collaborative effort between the Swiss Federal Nuclear Safety Inspectorate (ENSI) and their consultants Principia and Stangenberg. As part of the IMPACT III project, reduced scale impact tests of reinforced concrete structures were carried out. The simulation of test X3 is presented here and the numerical results are compared with those obtained in the test, carried out in August 2013. The general object is to improve the safety of nuclear facilities and, more specifically, to demonstrate the capabilities of current simulation techniques to reproduce the behaviour of a reinforced concrete structure impacted by a soft missile. The missile is a steel tube with a mass of 50 kg and travelling at 140 m/s. The target is a 250 mm thick, 2,1 m by 2,1 m reinforced concrete wall, held in a stiff supporting frame. The reinforcement includes both longitudinal and transverse rebars. Calculations were carried out before and after the test with Abaqus (Principia) and SOFiSTiK (Stangenberg). In the Abaqus simulation the concrete is modelled using solid elements and a damaged plasticity formulation, the rebars with embedded beam elements, and the missile with shell elements. In SOFiSTiK the target is modelled with non-linear, layered shell elements for the reinforcement on both sides; non-linear shear deformations of shell/plate elements are approximately included. The results generally indicate a good agreement between calculations and measurements.
Resumo:
Existe normalmente el propósito de obtener la mejor solución posible cuando se plantea un problema estructural, entendiendo como mejor la solución que cumpliendo los requisitos estructurales, de uso, etc., tiene un coste físico menor. En una primera aproximación se puede representar el coste físico por medio del peso propio de la estructura, lo que permite plantear la búsqueda de la mejor solución como la de menor peso. Desde un punto de vista práctico, la obtención de buenas soluciones—es decir, soluciones cuyo coste sea solo ligeramente mayor que el de la mejor solución— es una tarea tan importante como la obtención de óptimos absolutos, algo en general difícilmente abordable. Para disponer de una medida de la eficiencia que haga posible la comparación entre soluciones se propone la siguiente definición de rendimiento estructural: la razón entre la carga útil que hay que soportar y la carga total que hay que contabilizar (la suma de la carga útil y el peso propio). La forma estructural puede considerarse compuesta por cuatro conceptos, que junto con el material, definen una estructura: tamaño, esquema, proporción, y grueso.Galileo (1638) propuso la existencia de un tamaño insuperable para cada problema estructural— el tamaño para el que el peso propio agota una estructura para un esquema y proporción dados—. Dicho tamaño, o alcance estructural, será distinto para cada material utilizado; la única información necesaria del material para su determinación es la razón entre su resistencia y su peso especifico, una magnitud a la que denominamos alcance del material. En estructuras de tamaño muy pequeño en relación con su alcance estructural la anterior definición de rendimiento es inútil. En este caso —estructuras de “talla nula” en las que el peso propio es despreciable frente a la carga útil— se propone como medida del coste la magnitud adimensional que denominamos número de Michell, que se deriva de la “cantidad” introducida por A. G. M. Michell en su artículo seminal de 1904, desarrollado a partir de un lema de J. C. Maxwell de 1870. A finales del siglo pasado, R. Aroca combino las teorías de Galileo y de Maxwell y Michell, proponiendo una regla de diseño de fácil aplicación (regla GA), que permite la estimación del alcance y del rendimiento de una forma estructural. En el presente trabajo se estudia la eficiencia de estructuras trianguladas en problemas estructurales de flexión, teniendo en cuenta la influencia del tamaño. Por un lado, en el caso de estructuras de tamaño nulo se exploran esquemas cercanos al optimo mediante diversos métodos de minoración, con el objetivo de obtener formas cuyo coste (medido con su numero deMichell) sea muy próximo al del optimo absoluto pero obteniendo una reducción importante de su complejidad. Por otro lado, se presenta un método para determinar el alcance estructural de estructuras trianguladas (teniendo en cuenta el efecto local de las flexiones en los elementos de dichas estructuras), comparando su resultado con el obtenido al aplicar la regla GA, mostrando las condiciones en las que es de aplicación. Por último se identifican las líneas de investigación futura: la medida de la complejidad; la contabilidad del coste de las cimentaciones y la extensión de los métodos de minoración cuando se tiene en cuenta el peso propio. ABSTRACT When a structural problem is posed, the intention is usually to obtain the best solution, understanding this as the solution that fulfilling the different requirements: structural, use, etc., has the lowest physical cost. In a first approximation, the physical cost can be represented by the self-weight of the structure; this allows to consider the search of the best solution as the one with the lowest self-weight. But, from a practical point of view, obtaining good solutions—i.e. solutions with higher although comparable physical cost than the optimum— can be as important as finding the optimal ones, because this is, generally, a not affordable task. In order to have a measure of the efficiency that allows the comparison between different solutions, a definition of structural efficiency is proposed: the ratio between the useful load and the total load —i.e. the useful load plus the self-weight resulting of the structural sizing—. The structural form can be considered to be formed by four concepts, which together with its material, completely define a particular structure. These are: Size, Schema, Slenderness or Proportion, and Thickness. Galileo (1638) postulated the existence of an insurmountable size for structural problems—the size for which a structure with a given schema and a given slenderness, is only able to resist its self-weight—. Such size, or structural scope will be different for every different used material; the only needed information about the material to determine such size is the ratio between its allowable stress and its specific weight: a characteristic length that we name material structural scope. The definition of efficiency given above is not useful for structures that have a small size in comparison with the insurmountable size. In this case—structures with null size, inwhich the self-weight is negligible in comparisonwith the useful load—we use as measure of the cost the dimensionless magnitude that we call Michell’s number, an amount derived from the “quantity” introduced by A. G. M. Michell in his seminal article published in 1904, developed out of a result from J. C.Maxwell of 1870. R. Aroca joined the theories of Galileo and the theories of Maxwell and Michell, obtaining some design rules of direct application (that we denominate “GA rule”), that allow the estimation of the structural scope and the efficiency of a structural schema. In this work the efficiency of truss-like structures resolving bending problems is studied, taking into consideration the influence of the size. On the one hand, in the case of structures with null size, near-optimal layouts are explored using several minimization methods, in order to obtain forms with cost near to the absolute optimum but with a significant reduction of the complexity. On the other hand, a method for the determination of the insurmountable size for truss-like structures is shown, having into account local bending effects. The results are checked with the GA rule, showing the conditions in which it is applicable. Finally, some directions for future research are proposed: the measure of the complexity, the cost of foundations and the extension of optimization methods having into account the self-weight.