14 resultados para Bayesian hierarchical model
em Universidad Politécnica de Madrid
Resumo:
This paper deals with the detection and tracking of an unknown number of targets using a Bayesian hierarchical model with target labels. To approximate the posterior probability density function, we develop a two-layer particle filter. One deals with track initiation, and the other with track maintenance. In addition, the parallel partition method is proposed to sample the states of the surviving targets.
Resumo:
La mayor parte de los entornos diseñados por el hombre presentan características geométricas específicas. En ellos es frecuente encontrar formas poligonales, rectangulares, circulares . . . con una serie de relaciones típicas entre distintos elementos del entorno. Introducir este tipo de conocimiento en el proceso de construcción de mapas de un robot móvil puede mejorar notablemente la calidad y la precisión de los mapas resultantes. También puede hacerlos más útiles de cara a un razonamiento de más alto nivel. Cuando la construcción de mapas se formula en un marco probabilístico Bayesiano, una especificación completa del problema requiere considerar cierta información a priori sobre el tipo de entorno. El conocimiento previo puede aplicarse de varias maneras, en esta tesis se presentan dos marcos diferentes: uno basado en el uso de primitivas geométricas y otro que emplea un método de representación cercano al espacio de las medidas brutas. Un enfoque basado en características geométricas supone implícitamente imponer un cierto modelo a priori para el entorno. En este sentido, el desarrollo de una solución al problema SLAM mediante la optimización de un grafo de características geométricas constituye un primer paso hacia nuevos métodos de construcción de mapas en entornos estructurados. En el primero de los dos marcos propuestos, el sistema deduce la información a priori a aplicar en cada caso en base a una extensa colección de posibles modelos geométricos genéricos, siguiendo un método de Maximización de la Esperanza para hallar la estructura y el mapa más probables. La representación de la estructura del entorno se basa en un enfoque jerárquico, con diferentes niveles de abstracción para los distintos elementos geométricos que puedan describirlo. Se llevaron a cabo diversos experimentos para mostrar la versatilidad y el buen funcionamiento del método propuesto. En el segundo marco, el usuario puede definir diferentes modelos de estructura para el entorno mediante grupos de restricciones y energías locales entre puntos vecinos de un conjunto de datos del mismo. El grupo de restricciones que se aplica a cada grupo de puntos depende de la topología, que es inferida por el propio sistema. De este modo, se pueden incorporar nuevos modelos genéricos de estructura para el entorno con gran flexibilidad y facilidad. Se realizaron distintos experimentos para demostrar la flexibilidad y los buenos resultados del enfoque propuesto. Abstract Most human designed environments present specific geometrical characteristics. In them, it is easy to find polygonal, rectangular and circular shapes, with a series of typical relations between different elements of the environment. Introducing this kind of knowledge in the mapping process of mobile robots can notably improve the quality and accuracy of the resulting maps. It can also make them more suitable for higher level reasoning applications. When mapping is formulated in a Bayesian probabilistic framework, a complete specification of the problem requires considering a prior for the environment. The prior over the structure of the environment can be applied in several ways; this dissertation presents two different frameworks, one using a feature based approach and another one employing a dense representation close to the measurements space. A feature based approach implicitly imposes a prior for the environment. In this sense, feature based graph SLAM was a first step towards a new mapping solution for structured scenarios. In the first framework, the prior is inferred by the system from a wide collection of feature based priors, following an Expectation-Maximization approach to obtain the most probable structure and the most probable map. The representation of the structure of the environment is based on a hierarchical model with different levels of abstraction for the geometrical elements describing it. Various experiments were conducted to show the versatility and the good performance of the proposed method. In the second framework, different priors can be defined by the user as sets of local constraints and energies for consecutive points in a range scan from a given environment. The set of constraints applied to each group of points depends on the topology, which is inferred by the system. This way, flexible and generic priors can be incorporated very easily. Several tests were carried out to demonstrate the flexibility and the good results of the proposed approach.
Resumo:
Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.
Resumo:
This thesis presents a task-oriented approach to telemanipulation for maintenance in large scientific facilities, with specific focus on the particle accelerator facilities at European Organization for Nuclear Research (CERN) in Geneva, Switzerland and GSI Helmholtz Centre for Heavy Ion Research (GSI) in Darmstadt, Germany. It examines how telemanipulation can be used in these facilities and reviews how this differs from the representation of telemanipulation tasks within the literature. It provides methods to assess and compare telemanipulation procedures as well a test suite to compare telemanipulators themselves from a dexterity perspective. It presents a formalisation of telemanipulation procedures into a hierarchical model which can be then used as a basis to aid maintenance engineers in assessing tasks for telemanipulation, and as the basis for future research. The model introduces a new concept of Elemental Actions as the building block of telemanipulation movements and incorporates the dependent factors for procedures at a higher level of abstraction. In order to gain insight into realistic tasks performed by telemanipulation systems within both industrial and research environments a survey of teleoperation experts is presented. Analysis of the responses is performed from which it is concluded that there is a need within the robotics community for physical benchmarking tests which are geared towards evaluating the dexterity of telemanipulators for comparison of their dexterous abilities. A three stage test suite is presented which is designed to allow maintenance engineers to assess different telemanipulators for their dexterity. This incorporates general characteristics of the system, a method to compare kinematic reachability of multiple telemanipulators and physical test setups to assess dexterity from a both a qualitative perspective and measurably by using performance metrics. Finally, experimental results are provided for the application of the proposed test suite onto two telemanipulation systems, one from a research setting and the other within CERN. It describes the procedure performed and discusses comparisons between the two systems, as well as providing input from the expert operator of the CERN system.
Resumo:
La presente Tesis plantea una metodología de análisis estadístico de roturas de tubería en redes de distribución de agua, que analiza la relación entre las roturas y la presión de agua y que propone la implantación de una gestión de presiones que reduzca el número de roturas que se producen en dichas redes. Las redes de distribución de agua se deterioran y una de sus graves consecuencias es la aparición de roturas frecuentes en sus tuberías. Las roturas llevan asociados elevados costes sociales, económicos y medioambientales y es por ello por lo que las compañías gestoras del agua tratan de reducirlas en la medida de lo posible. Las redes de distribución de agua se pueden dividir en zonas o sectores que facilitan su control y que pueden ser independientes o aislarse mediante válvulas, como ocurre en las redes de países más desarrollados, o pueden estar intercomunicados hidráulicamente. La implantación de una gestión de presiones suele llevarse a cabo a través de las válvulas reductoras de presión (VPR), que se instalan en las cabeceras de estos sectores y que controlan la presión aguas abajo de la misma, aunque varíe su caudal de entrada. Los métodos más conocidos de la gestión de presiones son la reducción de presiones, que es el control más habitual, el mantenimiento de la presión, la prevención y/o alivio de los aumentos repentinos de presión y el establecimiento de un control por alturas. A partir del año 2005 se empezó a reconocer el efecto de la gestión de presiones sobre la disminución de las roturas. En esta Tesis, se sugiere una gestión de presiones que controle los rangos de los indicadores de la presión de cabecera que más influyan en la probabilidad de roturas de tubería. Así, la presión del agua se caracteriza a través de indicadores obtenidos de la presión registrada en la cabecera de los sectores, debido a que se asume que esta presión es representativa de la presión de operación de todas las tuberías porque las pérdidas de carga son relativamente bajas y las diferencias topográficas se tienen en cuenta en el diseño de los sectores. Y los indicadores de presión, que se pueden definir como el estadístico calculado a partir de las series de la presión de cabecera sobre una ventana de tiempo, pueden proveer la información necesaria para ayudar a la toma de decisiones a los gestores del agua con el fin de reducir las roturas de tubería en las redes de distribución de agua. La primera parte de la metodología que se propone en esta Tesis trata de encontrar los indicadores de presión que influyen más en la probabilidad de roturas de tuberías. Para conocer si un indicador es influyente en la probabilidad de las roturas se comparan las estimaciones de las funciones de distribución acumulada (FDAs) de los indicadores de presiones, considerando dos situaciones: cuando se condicionan a la ocurrencia de una rotura (suceso raro) y cuando se calculan en la situación normal de operación (normal operación). Por lo general, las compañías gestoras cuentan con registros de roturas de los años más recientes y al encontrarse las tuberías enterradas se complica el acceso a la información. Por ello, se propone el uso de funciones de probabilidad que permiten reducir la incertidumbre asociada a los datos registrados. De esta forma, se determinan las funciones de distribución acumuladas (FDAs) de los valores del indicador de la serie de presión (situación normal de operación) y las FDAs de los valores del indicador en el momento de ocurrencia de las roturas (condicionado a las roturas). Si las funciones de distribución provienen de la misma población, no se puede deducir que el indicador claramente influya en la probabilidad de roturas. Sin embargo, si se prueba estadísticamente que las funciones proceden de la misma población, se puede concluir que existe una relación entre el indicador analizado y la ocurrencia de las roturas. Debido a que el número de valores del indicador de la FDA condicionada a las roturas es mucho menor que el número de valores del indicador de la FDA incondicional a las roturas, se generan series aleatorias a partir de los valores de los indicadores con el mismo número de valores que roturas registradas hay. De esta forma, se comparan las FDAs de series aleatorias del indicador con la FDA condicionada a las roturas del mismo indicador y se deduce si el indicador es influyente en la probabilidad de las roturas. Los indicadores de presión pueden depender de unos parámetros. A través de un análisis de sensibilidad y aplicando un test estadístico robusto se determina la situación en la que estos parámetros dan lugar a que el indicador sea más influyente en la probabilidad de las roturas. Al mismo tiempo, los indicadores se pueden calcular en función de dos parámetros de cálculo que se denominan el tiempo de anticipación y el ancho de ventana. El tiempo de anticipación es el tiempo (en horas) entre el final del periodo de computación del indicador de presión y la rotura, y el ancho de ventana es el número de valores de presión que se requieren para calcular el indicador de presión y que es múltiplo de 24 horas debido al comportamiento cíclico diario de la presión. Un análisis de sensibilidad de los parámetros de cálculo explica cuándo los indicadores de presión influyen más en la probabilidad de roturas. En la segunda parte de la metodología se presenta un modelo de diagnóstico bayesiano. Este tipo de modelo forma parte de los modelos estadísticos de prevención de roturas, parten de los datos registrados para establecer patrones de fallo y utilizan el teorema de Bayes para determinar la probabilidad de fallo cuando se condiciona la red a unas determinadas características. Así, a través del teorema de Bayes se comparan la FDA genérica del indicador con la FDA condicionada a las roturas y se determina cuándo la probabilidad de roturas aumenta para ciertos rangos del indicador que se ha inferido como influyente en las roturas. Se determina un ratio de probabilidad (RP) que cuando es superior a la unidad permite distinguir cuándo la probabilidad de roturas incrementa para determinados intervalos del indicador. La primera parte de la metodología se aplica a la red de distribución de la Comunidad de Madrid (España) y a la red de distribución de Ciudad de Panamá (Panamá). Tras el filtrado de datos se deduce que se puede aplicar la metodología en 15 sectores en la Comunidad de Madrid y en dos sectores, llamados corregimientos, en Ciudad de Panamá. Los resultados demuestran que en las dos redes los indicadores más influyentes en la probabilidad de las roturas son el rango de la presión, que supone la diferencia entre la presión máxima y la presión mínima, y la variabilidad de la presión, que considera la propiedad estadística de la desviación típica. Se trata, por tanto, de indicadores que hacen referencia a la dispersión de los datos, a la persistencia de la variación de la presión y que se puede asimilar en resistencia de materiales a la fatiga. La segunda parte de la metodología se ha aplicado a los indicadores influyentes en la probabilidad de las roturas de la Comunidad de Madrid y se ha deducido que la probabilidad de roturas aumenta para valores extremos del indicador del rango de la presión y del indicador de la variabilidad de la presión. Finalmente, se recomienda una gestión de presiones que limite los intervalos de los indicadores influyentes en la probabilidad de roturas que incrementen dicha probabilidad. La metodología propuesta puede aplicarse a otras redes de distribución y puede ayudar a las compañías gestoras a reducir el número de fallos en el sistema a través de la gestión de presiones. This Thesis presents a methodology for the statistical analysis of pipe breaks in water distribution networks. The methodology studies the relationship between pipe breaks and water pressure, and proposes a pressure management procedure to reduce the number of breaks that occur in such networks. One of the manifestations of the deterioration of water supply systems is frequent pipe breaks. System failures are one of the major challenges faced by water utilities, due to their associated social, economic and environmental costs. For all these reasons, water utilities aim at reducing the problem of break occurrence to as great an extent as possible. Water distribution networks can be divided into areas or sectors, which facilitates the control of the network. These areas may be independent or isolated by valves, as it usually happens in developing countries. Alternatively, they can be hydraulically interconnected. The implementation of pressure management strategies is usually carried out through pressure-reducing valves (PRV). These valves are installed at the head of the sectors and, although the inflow may vary significantly, they control the downstream pressure. The most popular methods of pressure management consist of pressure reduction, which is the common form of control, pressure sustaining, prevention and/or alleviation of pressure surges or large variations in pressure, and level/altitude control. From 2005 onwards, the effects of pressure management on burst frequencies have become more widely recognized in the technical literature. This thesis suggests a pressure management that controls the pressure indicator ranges most influential on the probability of pipe breaks. Operating pressure in a sector is characterized by means of a pressure indicator at the head of the DMA, as head losses are relatively small and topographical differences were accounted for at the design stage. The pressure indicator, which may be defined as the calculated statistic from the time series of pressure head over a specific time window, may provide necessary information to help water utilities to make decisions to reduce pipe breaks in water distribution networks. The first part of the methodology presented in this Thesis provides the pressure indicators which have the greatest impact on the probability of pipe breaks to be determined. In order to know whether a pressure indicator influences the probability of pipe breaks, the proposed methodology compares estimates of cumulative distribution functions (CDFs) of a pressure indicator through consideration of two situations: when they are conditioned to the occurrence of a pipe break (a rare event), and when they are not (a normal operation). Water utilities usually have a history of failures limited to recent periods of time, and it is difficult to have access to precise information in an underground network. Therefore, the use of distribution functions to address such imprecision of recorded data is proposed. Cumulative distribution functions (CDFs) derived from the time series of pressure indicators (normal operation) and CDFs of indicator values at times coincident with a reported pipe break (conditioned to breaks) are compared. If all estimated CDFs are drawn from the same population, there is no reason to infer that the studied indicator clearly influences the probability of the rare event. However, when it is statistically proven that the estimated CDFs do not come from the same population, the analysed indicator may have an influence on the occurrence of pipe breaks. Due to the fact that the number of indicator values used to estimate the CDF conditioned to breaks is much lower in comparison with the number of indicator values to estimate the CDF of the unconditional pressure series, and that the obtained results depend on the size of the compared samples, CDFs from random sets of the same size sampled from the unconditional indicator values are estimated. Therefore, the comparison between the estimated CDFs of random sets of the indicator and the estimated CDF conditioned to breaks allows knowledge of if the indicator is influential on the probability of pipe breaks. Pressure indicators depend on various parameters. Sensitivity analysis and a robust statistical test allow determining the indicator for which these parameters result most influential on the probability of pipe breaks. At the same time, indicators can be calculated according to two model parameters, named as the anticipation time and the window width. The anticipation time refers to the time (hours) between the end of the period for the computation of the pressure indicator and the break. The window width is the number of instantaneous pressure values required to calculate the pressure indicator and is multiple of 24 hours, as water pressure has a cyclical behaviour which lasts one day. A sensitivity analysis of the model parameters explains when the pressure indicator is more influential on the probability of pipe breaks. The second part of the methodology presents a Bayesian diagnostic model. This kind of model belongs to the class of statistical predictive models, which are based on historical data, represent break behavior and patterns in water mains, and use the Bayes’ theorem to condition the probability of failure to specific system characteristics. The Bayes’ theorem allows comparing the break-conditioned FDA and the unconditional FDA of the indicators and determining when the probability of pipe breaks increases for certain pressure indicator ranges. A defined probability ratio provides a measure to establish whether the probability of breaks increases for certain ranges of the pressure indicator. The first part of the methodology is applied to the water distribution network of Madrid (Spain) and to the water distribution network of Panama City (Panama). The data filtering method suggests that the methodology can be applied to 15 sectors in Madrid and to two areas in Panama City. The results show that, in both systems, the most influential indicators on the probability of pipe breaks are the pressure range, which is the difference between the maximum pressure and the minimum pressure, and pressure variability, referred to the statistical property of the standard deviation. Therefore, they represent the dispersion of the data, the persistence of the variation in pressure and may be related to the fatigue in material resistance. The second part of the methodology has been applied to the influential indicators on the probability of pipe breaks in the water distribution network of Madrid. The main conclusion is that the probability of pipe breaks increases for the extreme values of the pressure range indicator and of the pressure variability indicator. Finally, a pressure management which limits the ranges of the pressure indicators influential on the probability of pipe breaks that increase such probability is recommended. The methodology presented here is general, may be applied to other water distribution networks, and could help water utilities reduce the number of system failures through pressure management.
Resumo:
En la actualidad, la gestión de embalses para el control de avenidas se realiza, comúnmente, utilizando modelos de simulación. Esto se debe, principalmente, a su facilidad de uso en tiempo real por parte del operador de la presa. Se han desarrollado modelos de optimización de la gestión del embalse que, aunque mejoran los resultados de los modelos de simulación, su aplicación en tiempo real se hace muy difícil o simplemente inviable, pues está limitada al conocimiento de la avenida futura que entra al embalse antes de tomar la decisión de vertido. Por esta razón, se ha planteado el objetivo de desarrollar un modelo de gestión de embalses en avenidas que incorpore las ventajas de un modelo de optimización y que sea de fácil uso en tiempo real por parte del gestor de la presa. Para ello, se construyó un modelo de red Bayesiana que representa los procesos de la cuenca vertiente y del embalse y, que aprende de casos generados sintéticamente mediante un modelo hidrológico agregado y un modelo de optimización de la gestión del embalse. En una primera etapa, se generó un gran número de episodios sintéticos de avenida utilizando el método de Monte Carlo, para obtener las lluvias, y un modelo agregado compuesto de transformación lluvia- escorrentía, para obtener los hidrogramas de avenida. Posteriormente, se utilizaron las series obtenidas como señales de entrada al modelo de gestión de embalses PLEM, que optimiza una función objetivo de costes mediante programación lineal entera mixta, generando igual número de eventos óptimos de caudal vertido y de evolución de niveles en el embalse. Los episodios simulados fueron usados para entrenar y evaluar dos modelos de red Bayesiana, uno que pronostica el caudal de entrada al embalse, y otro que predice el caudal vertido, ambos en un horizonte de tiempo que va desde una a cinco horas, en intervalos de una hora. En el caso de la red Bayesiana hidrológica, el caudal de entrada que se elige es el promedio de la distribución de probabilidad de pronóstico. En el caso de la red Bayesiana hidráulica, debido al comportamiento marcadamente no lineal de este proceso y a que la red Bayesiana devuelve un rango de posibles valores de caudal vertido, se ha desarrollado una metodología para seleccionar un único valor, que facilite el trabajo del operador de la presa. Esta metodología consiste en probar diversas estrategias propuestas, que incluyen zonificaciones y alternativas de selección de un único valor de caudal vertido en cada zonificación, a un conjunto suficiente de episodios sintéticos. Los resultados de cada estrategia se compararon con el método MEV, seleccionándose las estrategias que mejoran los resultados del MEV, en cuanto al caudal máximo vertido y el nivel máximo alcanzado por el embalse, cualquiera de las cuales puede usarse por el operador de la presa en tiempo real para el embalse de estudio (Talave). La metodología propuesta podría aplicarse a cualquier embalse aislado y, de esta manera, obtener, para ese embalse particular, diversas estrategias que mejoran los resultados del MEV. Finalmente, a modo de ejemplo, se ha aplicado la metodología a una avenida sintética, obteniendo el caudal vertido y el nivel del embalse en cada intervalo de tiempo, y se ha aplicado el modelo MIGEL para obtener en cada instante la configuración de apertura de los órganos de desagüe que evacuarán el caudal. Currently, the dam operator for the management of dams uses simulation models during flood events, mainly due to its ease of use in real time. Some models have been developed to optimize the management of the reservoir to improve the results of simulation models. However, real-time application becomes very difficult or simply unworkable, because the decision to discharge depends on the unknown future avenue entering the reservoir. For this reason, the main goal is to develop a model of reservoir management at avenues that incorporates the advantages of an optimization model. At the same time, it should be easy to use in real-time by the dam manager. For this purpose, a Bayesian network model has been developed to represent the processes of the watershed and reservoir. This model learns from cases generated synthetically by a hydrological model and an optimization model for managing the reservoir. In a first stage, a large number of synthetic flood events was generated using the Monte Carlo method, for rain, and rain-added processing model composed of runoff for the flood hydrographs. Subsequently, the series obtained were used as input signals to the reservoir management model PLEM that optimizes a target cost function using mixed integer linear programming. As a result, many optimal discharge rate events and water levels in the reservoir levels were generated. The simulated events were used to train and test two models of Bayesian network. The first one predicts the flow into the reservoir, and the second predicts the discharge flow. They work in a time horizon ranging from one to five hours, in intervals of an hour. In the case of hydrological Bayesian network, the chosen inflow is the average of the probability distribution forecast. In the case of hydraulic Bayesian network the highly non-linear behavior of this process results on a range of possible values of discharge flow. A methodology to select a single value has been developed to facilitate the dam operator work. This methodology tests various strategies proposed. They include zoning and alternative selection of a single value in each discharge rate zoning from a sufficient set of synthetic episodes. The results of each strategy are compared with the MEV method. The strategies that improve the outcomes of MEV are selected and can be used by the dam operator in real time applied to the reservoir study case (Talave). The methodology could be applied to any single reservoir and, thus, obtain, for the particular reservoir, various strategies that improve results from MEV. Finally, the methodology has been applied to a synthetic flood, obtaining the discharge flow and the reservoir level in each time interval. The open configuration floodgates to evacuate the flow at each interval have been obtained applying the MIGEL model.
Resumo:
In this paper, we introduce B2DI model that extends BDI model to perform Bayesian inference under uncertainty. For scalability and flexibility purposes, Multiply Sectioned Bayesian Network (MSBN) technology has been selected and adapted to BDI agent reasoning. A belief update mechanism has been defined for agents, whose belief models are connected by public shared beliefs, and the certainty of these beliefs is updated based on MSBN. The classical BDI agent architecture has been extended in order to manage uncertainty using Bayesian reasoning. The resulting extended model, so-called B2DI, proposes a new control loop. The proposed B2DI model has been evaluated in a network fault diagnosis scenario. The evaluation has compared this model with two previously developed agent models. The evaluation has been carried out with a real testbed diagnosis scenario using JADEX. As a result, the proposed model exhibits significant improvements in the cost and time required to carry out a reliable diagnosis.
Resumo:
Road accidents are a very relevant issue in many countries and macroeconomic models are very frequently applied by academia and administrations to reduce their frequency and consequences. The selection of explanatory variables and response transformation parameter within the Bayesian framework for the selection of the set of explanatory variables a TIM and 3IM (two input and three input models) procedures are proposed. The procedure also uses the DIC and pseudo -R2 goodness of fit criteria. The model to which the methodology is applied is a dynamic regression model with Box-Cox transformation (BCT) for the explanatory variables and autorgressive (AR) structure for the response. The initial set of 22 explanatory variables are identified. The effects of these factors on the fatal accident frequency in Spain, during 2000-2012, are estimated. The dependent variable is constructed considering the stochastic trend component.
Resumo:
In this study we are proposing a Bayesian model selection methodology, where the best model from the list of candidate structural explanatory models is selected. The model structure is based on the Zellner's (1971)explanatory model with autoregressive errors. For the selection technique we are using a parsimonious model, where the model variables are transformed using Box and Cox (1964) class of transformations.
Resumo:
Using the Bayesian approach as the model selection criteria, the main purpose in this study is to establish a practical road accident model that can provide a better interpretation and prediction performance. For this purpose we are using a structural explanatory model with autoregressive error term. The model estimation is carried out through Bayesian inference and the best model is selected based on the goodness of fit measures. To cross validate the model estimation further prediction analysis were done. As the road safety measures the number of fatal accidents in Spain, during 2000-2011 were employed. The results of the variable selection process show that the factors explaining fatal road accidents are mainly exposure, economic factors, and surveillance and legislative measures. The model selection shows that the impact of economic factors on fatal accidents during the period under study has been higher compared to surveillance and legislative measures.
Resumo:
Learning the structure of a graphical model from data is a common task in a wide range of practical applications. In this paper, we focus on Gaussian Bayesian networks, i.e., on continuous data and directed acyclic graphs with a joint probability density of all variables given by a Gaussian. We propose to work in an equivalence class search space, specifically using the k-greedy equivalence search algorithm. This, combined with regularization techniques to guide the structure search, can learn sparse networks close to the one that generated the data. We provide results on some synthetic networks and on modeling the gene network of the two biological pathways regulating the biosynthesis of isoprenoids for the Arabidopsis thaliana plant
Resumo:
Belief propagation (BP) is a technique for distributed inference in wireless networks and is often used even when the underlying graphical model contains cycles. In this paper, we propose a uniformly reweighted BP scheme that reduces the impact of cycles by weighting messages by a constant ?edge appearance probability? rho ? 1. We apply this algorithm to distributed binary hypothesis testing problems (e.g., distributed detection) in wireless networks with Markov random field models. We demonstrate that in the considered setting the proposed method outperforms standard BP, while maintaining similar complexity. We then show that the optimal ? can be approximated as a simple function of the average node degree, and can hence be computed in a distributed fashion through a consensus algorithm.
Resumo:
The authors are from UPM and are relatively grouped, and all have intervened in different academic or real cases on the subject, at different times as being of different age. With precedent from E. Torroja and A. Páez in Madrid Spain Safety Probabilistic models for concrete about 1957, now in ICOSSAR conferences, author J.M. Antón involved since autumn 1967 for euro-steel construction in CECM produced a math model for independent load superposition reductions, and using it a load coefficient pattern for codes in Rome Feb. 1969, practically adopted for European constructions, giving in JCSS Lisbon Feb. 1974 suggestion of union for concrete-steel-al.. That model uses model for loads like Gumbel type I, for 50 years for one type of load, reduced to 1 year to be added to other independent loads, the sum set in Gumbel theories to 50 years return period, there are parallel models. A complete reliability system was produced, including non linear effects as from buckling, phenomena considered somehow in actual Construction Eurocodes produced from Model Codes. The system was considered by author in CEB in presence of Hydraulic effects from rivers, floods, sea, in reference with actual practice. When redacting a Road Drainage Norm in MOPU Spain an optimization model was realized by authors giving a way to determine the figure of Return Period, 10 to 50 years, for the cases of hydraulic flows to be considered in road drainage. Satisfactory examples were a stream in SE of Spain with Gumbel Type I model and a paper of Ven Te Chow with Mississippi in Keokuk using Gumbel type II, and the model can be modernized with more varied extreme laws. In fact in the MOPU drainage norm the redacting commission acted also as expert to set a table of return periods for elements of road drainage, in fact as a multi-criteria complex decision system. These precedent ideas were used e.g. in wide Codes, indicated in symposia or meetings, but not published in journals in English, and a condensate of contributions of authors is presented. The authors are somehow involved in optimization for hydraulic and agro planning, and give modest hints of intended applications in presence of agro and environment planning as a selection of the criteria and utility functions involved in bayesian, multi-criteria or mixed decision systems. Modest consideration is made of changing in climate, and on the production and commercial systems, and on others as social and financial.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based