18 resultados para Barn owl.
em Universidad Politécnica de Madrid
Resumo:
The conformance of semantic technologies has to be systematically evaluated to measure and verify the real adherence of these technologies to the Semantic Web standards. Currente valuations of semantic technology conformance are not exhaustive enough and do not directly cover user requirements and use scenarios, which raises the need for a simple, extensible and parameterizable method to generate test data for such evaluations. To address this need, this paper presents a keyword-driven approach for generating ontology language conformance test data that can be used to evaluate semantic technologies, details the definition of a test suite for evaluating OWL DL conformance using this approach,and describes the use and extension of this test suite during the evaluation of some tools.
Resumo:
En esta segunda entrega de “Salas de Ordeño” vamos a exponer los distintos tipos de instalaciones de ordeño mecánico que nos podemos encontrar en el mercado, explicando sus características así como sus principales ventajas e inconvenientes. Dado que no queremos que esta exposición sea telegráfica, necesariamente tiene que dividirse en varias partes. En esta primera parte haremos una relación inicial de todos los tipos de instalaciones para, seguidamente abordar las de ordeño en plaza y los dos primeros tipos de instalaciones para ordeño en sala: la sala “FLAT-BARN” y la sala “TÁNDEM”. Somos conscientes de que el ordeño en plaza es cada vez menos frecuente en nuestro país, conforme van despareciendo las explotaciones de menor tamaño y que, por razones climáticas, no es necesario encerrar a las vacas en el establo de forma permanente durante el invierno. No obstante, nos referiremos al ordeño en plaza con cierta brevedad pues pueden seguir siendo, junto con la sala “flat-barn”, una opción interesante en países en desarrollo como primer paso para pasar del ordeño manual al mecánico o de la estabulación fija a la estabulación libre; tal y como sucedió en España hace 30-40 años
Resumo:
Although the computational complexity of the logic underlying the standard OWL 2 for the Web Ontology Language (OWL) appears discouraging for real applications, several contributions have shown that reasoning with OWL ontologies is feasible in practice. It turns out that reasoning in practice is often far less complex than is suggested by the established theoretical complexity bound, which reflects the worstcase scenario. State-of-the reasoners like FACT++, HERMIT, PELLET and RACER have demonstrated that, even with fairly expressive fragments of OWL 2, acceptable performances can be achieved. However, it is still not well understood why reasoning is feasible in practice and it is rather unclear how to study this problem. In this paper, we suggest first steps that in our opinion could lead to a better understanding of practical complexity. We also provide and discuss some initial empirical results with HERMIT on prominent ontologies
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
Biomedical ontologies are key elements for building up the Life Sciences Semantic Web. Reusing and building biomedical ontologies requires flexible and versatile tools to manipulate them efficiently, in particular for enriching their axiomatic content. The Ontology Pre Processor Language (OPPL) is an OWL-based language for automating the changes to be performed in an ontology. OPPL augments the ontologists’ toolbox by providing a more efficient, and less error-prone, mechanism for enriching a biomedical ontology than that obtained by a manual treatment. Results We present OPPL-Galaxy, a wrapper for using OPPL within Galaxy. The functionality delivered by OPPL (i.e. automated ontology manipulation) can be combined with the tools and workflows devised within the Galaxy framework, resulting in an enhancement of OPPL. Use cases are provided in order to demonstrate OPPL-Galaxy’s capability for enriching, modifying and querying biomedical ontologies. Conclusions Coupling OPPL-Galaxy with other bioinformatics tools of the Galaxy framework results in a system that is more than the sum of its parts. OPPL-Galaxy opens a new dimension of analyses and exploitation of biomedical ontologies, including automated reasoning, paving the way towards advanced biological data analyses.
Resumo:
The W3C Semantic Sensor Network Incubator group (the SSN-XG) produced an OWL 2 ontology to describe sensors and observations ? the SSN ontology, available at http://purl.oclc.org/NET/ssnx/ssn. The SSN ontology can describe sensors in terms of capabilities, measurement processes, observations and deployments. This article describes the SSN ontology. It further gives an example and describes the use of the ontology in recent research projects.
Resumo:
Ontology antipatterns are structures that reflect ontology modelling problems, they lead to inconsistencies, bad reasoning performance or bad formalisation of domain knowledge. Antipatterns normally appear in ontologies developed by those who are not experts in ontology engineering. Based on our experience in ontology design, we have created a catalogue of such antipatterns in the past, and in this paper we describe how we can use SPARQL-DL to detect them. We conduct some experiments to detect them in a large OWL ontology corpus obtained from the Watson ontology search portal. Our results show that each antipattern needs a specialised detection method.
Resumo:
Ontology antipatterns are structures that reflect ontology modelling problems because they lead to inconsistencies, bad reasoning performance or bad formalisation of domain knowledge. We propose four methods for the detection of antipatterns using SPARQL queries.We conduct some experiments to detect antipattern in a corpus of OWL ontologies.
Resumo:
Provenance is key for describing the evolution of a resource, the entity responsible for its changes and how these changes affect its final state. A proper description of the provenance of a resource shows who has its attribution and can help resolving whether it can be trusted or not. This tutorial will provide an overview of the W3C PROV data model and its serialization as an OWL ontology. The tutorial will incrementally explain the features of the PROV data model, from the core starting terms to the most complex concepts. Finally, the tutorial will show the relation between PROV-O and the Dublin Core Metadata terms.
Resumo:
A growing number of ontologies are already available thanks to development initiatives in many different fields. In such ontology developments, developers must tackle a wide range of difficulties and handicaps, which can result in the appearance of anomalies in the resulting ontologies. Therefore, ontology evaluation plays a key role in ontology development projects. OOPS! is an on-line tool that automatically detects pitfalls, considered as potential errors or problems, and thus may help ontology developers to improve their ontologies. To gain insight in the existence of pitfalls and to assess whether there are differences among ontologies developed by novices, a random set of already scanned ontologies, and existing well-known ones, data of 406 OWL ontologies were analysed on OOPS!’s 21 pitfalls, of which 24 ontologies were also examined manually on the detected pitfalls. The various analyses performed show only minor differences between the three sets of ontologies, therewith providing a general landscape of pitfalls in ontologies.
Resumo:
Currently, there is a great deal of well-founded explicit knowledge formalizing general notions, such as time concepts and the part_of relation. Yet, it is often the case that instead of reusing ontologies that implement such notions (the so-called general ontologies), engineers create procedural programs that implicitly implement this knowledge. They do not save time and code by reusing explicit knowledge, and devote effort to solve problems that other people have already adequately solved. Consequently, we have developed a methodology that helps engineers to: (a) identify the type of general ontology to be reused; (b) find out which axioms and definitions should be reused; (c) make a decision, using formal concept analysis, on what general ontology is going to be reused; and (d) adapt and integrate the selected general ontology in the domain ontology to be developed. To illustrate our approach we have employed use-cases. For each use case, we provide a set of heuristics with examples. Each of these heuristics has been tested in either OWL or Prolog. Our methodology has been applied to develop a pharmaceutical product ontology. Additionally, we have carried out a controlled experiment with graduated students doing a MCs in Artificial Intelligence. This experiment has yielded some interesting findings concerning what kind of features the future extensions of the methodology should have.
Resumo:
The objective of this study was to build up a data set including productive performance and production factors data of growing-finishing (GF) pigs in Spain in order to perform a representative and reliable description of the traits of Spanish growing-finishing pig industry. Data from 764 batches from 452 farms belonging to nine companies (1,157,212 pigs) were collected between 2008 and 2010 through a survey including five parts: general, facilities, feeding, health status and performance. Most studied farms had only GF pigs on their facilities (94.7%), produced ‘industrial’ pigs (86.7%), had entire male and female (59.5%) and Pietrain-sired pigs (70.0%), housed between 13-20 pigs per pen (87.2%), had 50% of slatted floor (70%), single-space dry feeder (54.0%), nipple drinker (88.7%) and automatic ventilation systems (71.2%). A 75.0% of the farms used three feeding phases using mainly pelleted diets (91.0%), 61.3% performed three or more antibiotic treatments and 36.5% obtained water from the public supply. Continuous variables studied had the following average values: number of pigs placed per batch, 1,515 pigs; initial and final body weight, 19.0 and 108 kg; length of GF period, 136 days; culling rate, 1.4%; barn occupation, 99.7%; feed intake per pig and fattening cycle, 244 kg; daily gain, 0.657 kg; feed conversion ratio, 2.77 kg kg-1 and mortality rate, 4.3%. Data reflecting the practical situation of the Spanish growing and finishing pig production and it may contribute to develop new strategies in order to improve the productive and economic efficiency of GF pig units.
Resumo:
Este Proyecto Fin de Grado trabaja en pos de la mejora y ampliación de los sistemas Pegaso y Gades, dos Sistemas Expertos enmarcados en el ámbito de la e-Salud. Estos sistemas, que ya estaban en funcionamiento antes del comienzo de este trabajo, apoyan la toma de decisiones en Atención Primaria. Esto es, permiten evaluar el nivel de adquisición del lenguaje en niños de 0 a 6 años a través de sus respectivas aplicaciones web. Además, permiten almacenar dichas evaluaciones y consultarlas posteriormente, junto con las decisiones del sistema asociadas a las mismas. Pegaso y Gades siguen una arquitectura de tres capas y están desarrollados usando fundamentalmente componentes Java y siguiendo. Como parte de este trabajo, en primer lugar se solucionan algunos problemas en el comportamiento de ambos sistemas, como su incompatibilidad con Java SE 7. A continuación, se desarrolla una aplicación que permite generar una ontología en lenguaje OWL desde código Java. Para ello, se estudia primero el concepto de ontología, el lenguaje OWL y las diferentes librerías Java existentes para generar ontologías OWL. Por otra parte, se mejoran algunas de las funcionalidades de los sistemas de partida y se desarrolla una nueva funcionalidad para la explotación de los datos almacenados en las bases de datos de ambos sistemas Esta nueva funcionalidad consiste en un módulo responsable de la generación de estadísticas a partir de los datos de las evaluaciones del lenguaje que hayan sido realizadas y, por tanto, almacenadas en las bases de datos. Estas estadísticas, que pueden ser consultadas por todos los usuarios de Pegaso y Gades, permiten establecer correlaciones entre los diversos conjuntos de datos de las evaluaciones del lenguaje. Por último, las estadísticas son mostradas por pantalla en forma de varios tipos de gráficas y tablas, de modo que los usuarios expertos puedan analizar la información contenida en ellas. ABSTRACT. This Bachelor's Thesis works towards improving and expanding the systems Pegaso and Gades, which are two Expert Systems that belong to the e-Health field. These systems, which were already operational before starting this work, support the decision-making process in Primary Care. That is, they allow to evaluate the language acquisition level in children from 0 to 6 years old. They also allow to store these evaluations and consult them afterwards, together with the decisions associated to each of them. Pegaso and Gades follow a three-tier architecture and are developed using mainly Java components. As part of this work, some of the behavioural problems of both systems are fixed, such as their incompatibility with Java SE 7. Next, an application that allows to generate an OWL ontology from Java code is developed. In order to do that, the concept of ontology, the OWL language and the different existing Java libraries to generate OWL ontologies are studied. On the other hand, some of the functionalities of the initial systems are improved and a new functionality to utilise the data stored in the databases of both systems is developed. This new functionality consists of a module responsible for the generation of statistics from the data of the language evaluations that have been performed and, thus, stored in the databases. These statistics, which can be consulted by all users of Pegaso and Gades, allow to establish correlations between the diverse set of data from the language evaluations. Finally, the statistics are presented to the user on the screen in the shape of various types of charts and tables, so that the expert users can analyse the information contained in them.
Resumo:
Los servicios en red que conocemos actualmente están basados en documentos y enlaces de hipertexto que los relacionan entre sí sin aportar verdadera información acerca de los contenidos que representan. Podría decirse que se trata de “una red diseñada por personas para ser interpretada por personas”. El objetivo principal de los últimos años es encaminar esta red hacia una web de conocimiento, en la que la información pueda ser interpretada por agentes computerizados de manera automática. Para llevar a cabo esta transformación es necesaria la utilización de nuevas tecnologías especialmente diseñadas para la descripción de contenidos como son las ontologías. Si bien las redes convencionales están evolucionando, no son las únicas que lo están haciendo. El rápido crecimiento de las redes de sensores y el importante aumento en el número de dispositivos conectados a internet, hace necesaria la incorporación de tecnologías de la web semántica a este tipo de redes. Para la realización de este Proyecto de Fin de Carrera se utilizará la ontología SSN, diseñada para la descripción semántica de sensores y las redes de las que forman parte con el fin de permitir una mejor interacción entre los dispositivos y los sistemas que hacen uso de ellos. El trabajo desarrollado a lo largo de este Proyecto de Fin de Carrera gira en torno a esta ontología, siendo el principal objetivo la generación semiautomática de código a partir de un modelo de sistemas descrito en función de las clases y propiedades proporcionadas por SSN. Para alcanzar este fin se dividirá el proyecto en varias partes. Primero se realizará un análisis de la ontología mencionada. A continuación se describirá un sistema simulado de sensores y por último se implementarán las aplicaciones para la generación automática de interfaces y la representación gráfica de los dispositivos del sistema a partir de la representación del éste en un fichero de tipo OWL. ABSTRACT. The web we know today is based on documents and hypertext links that relate these documents with each another, without providing consistent information about the contents they represent. It could be said that its a network designed by people to be used by people. The main goal of the last couple of years is to guide this network into a web of knowledge, where information can be automatically processed by machines. This transformation, requires the use of new technologies specially designed for content description such as ontologies. Nowadays, conventional networks are not the only type of networks evolving. The use of sensor networks and the number of sensor devices connected to the Internet is rapidly increasing, making the use the integration of semantic web technologies to this kind of networks completely necessary. The SSN ontology will be used for the development of this Final Degree Dissertation. This ontology was design to semantically describe sensors and the networks theyre part of, allowing a better interaction between devices and the systems that use them. The development carried through this Final Degree Dissertation revolves around this ontology and aims to achieve semiautomatic code generation starting from a system model described based on classes and properties provided by SSN. To reach this goal, de Dissertation will be divided in several parts. First, an analysis about the mentioned ontology will be made. Following this, a simulated sensor system will be described, and finally, the implementation of the applications will take place. One of these applications will automatically generate de interfaces and the other one will graphically represents the devices in the sensor system, making use of the system representation in an OWL file.
Resumo:
La creciente complejidad, heterogeneidad y dinamismo inherente a las redes de telecomunicaciones, los sistemas distribuidos y los servicios avanzados de información y comunicación emergentes, así como el incremento de su criticidad e importancia estratégica, requieren la adopción de tecnologías cada vez más sofisticadas para su gestión, su coordinación y su integración por parte de los operadores de red, los proveedores de servicio y las empresas, como usuarios finales de los mismos, con el fin de garantizar niveles adecuados de funcionalidad, rendimiento y fiabilidad. Las estrategias de gestión adoptadas tradicionalmente adolecen de seguir modelos excesivamente estáticos y centralizados, con un elevado componente de supervisión y difícilmente escalables. La acuciante necesidad por flexibilizar esta gestión y hacerla a la vez más escalable y robusta, ha provocado en los últimos años un considerable interés por desarrollar nuevos paradigmas basados en modelos jerárquicos y distribuidos, como evolución natural de los primeros modelos jerárquicos débilmente distribuidos que sucedieron al paradigma centralizado. Se crean así nuevos modelos como son los basados en Gestión por Delegación, en el paradigma de código móvil, en las tecnologías de objetos distribuidos y en los servicios web. Estas alternativas se han mostrado enormemente robustas, flexibles y escalables frente a las estrategias tradicionales de gestión, pero continúan sin resolver aún muchos problemas. Las líneas actuales de investigación parten del hecho de que muchos problemas de robustez, escalabilidad y flexibilidad continúan sin ser resueltos por el paradigma jerárquico-distribuido, y abogan por la migración hacia un paradigma cooperativo fuertemente distribuido. Estas líneas tienen su germen en la Inteligencia Artificial Distribuida (DAI) y, más concretamente, en el paradigma de agentes autónomos y en los Sistemas Multi-agente (MAS). Todas ellas se perfilan en torno a un conjunto de objetivos que pueden resumirse en alcanzar un mayor grado de autonomía en la funcionalidad de la gestión y una mayor capacidad de autoconfiguración que resuelva los problemas de escalabilidad y la necesidad de supervisión presentes en los sistemas actuales, evolucionar hacia técnicas de control fuertemente distribuido y cooperativo guiado por la meta y dotar de una mayor riqueza semántica a los modelos de información. Cada vez más investigadores están empezando a utilizar agentes para la gestión de redes y sistemas distribuidos. Sin embargo, los límites establecidos en sus trabajos entre agentes móviles (que siguen el paradigma de código móvil) y agentes autónomos (que realmente siguen el paradigma cooperativo) resultan difusos. Muchos de estos trabajos se centran en la utilización de agentes móviles, lo cual, al igual que ocurría con las técnicas de código móvil comentadas anteriormente, les permite dotar de un mayor componente dinámico al concepto tradicional de Gestión por Delegación. Con ello se consigue flexibilizar la gestión, distribuir la lógica de gestión cerca de los datos y distribuir el control. Sin embargo se permanece en el paradigma jerárquico distribuido. Si bien continúa sin definirse aún una arquitectura de gestión fiel al paradigma cooperativo fuertemente distribuido, estas líneas de investigación han puesto de manifiesto serios problemas de adecuación en los modelos de información, comunicación y organizativo de las arquitecturas de gestión existentes. En este contexto, la tesis presenta un modelo de arquitectura para gestión holónica de sistemas y servicios distribuidos mediante sociedades de agentes autónomos, cuyos objetivos fundamentales son el incremento del grado de automatización asociado a las tareas de gestión, el aumento de la escalabilidad de las soluciones de gestión, soporte para delegación tanto por dominios como por macro-tareas, y un alto grado de interoperabilidad en entornos abiertos. A partir de estos objetivos se ha desarrollado un modelo de información formal de tipo semántico, basado en lógica descriptiva que permite un mayor grado de automatización en la gestión en base a la utilización de agentes autónomos racionales, capaces de razonar, inferir e integrar de forma dinámica conocimiento y servicios conceptualizados mediante el modelo CIM y formalizados a nivel semántico mediante lógica descriptiva. El modelo de información incluye además un “mapping” a nivel de meta-modelo de CIM al lenguaje de especificación de ontologías OWL, que supone un significativo avance en el área de la representación y el intercambio basado en XML de modelos y meta-información. A nivel de interacción, el modelo aporta un lenguaje de especificación formal de conversaciones entre agentes basado en la teoría de actos ilocucionales y aporta una semántica operacional para dicho lenguaje que facilita la labor de verificación de propiedades formales asociadas al protocolo de interacción. Se ha desarrollado también un modelo de organización holónico y orientado a roles cuyas principales características están alineadas con las demandadas por los servicios distribuidos emergentes e incluyen la ausencia de control central, capacidades de reestructuración dinámica, capacidades de cooperación, y facilidades de adaptación a diferentes culturas organizativas. El modelo incluye un submodelo normativo adecuado al carácter autónomo de los holones de gestión y basado en las lógicas modales deontológica y de acción.---ABSTRACT---The growing complexity, heterogeneity and dynamism inherent in telecommunications networks, distributed systems and the emerging advanced information and communication services, as well as their increased criticality and strategic importance, calls for the adoption of increasingly more sophisticated technologies for their management, coordination and integration by network operators, service providers and end-user companies to assure adequate levels of functionality, performance and reliability. The management strategies adopted traditionally follow models that are too static and centralised, have a high supervision component and are difficult to scale. The pressing need to flexibilise management and, at the same time, make it more scalable and robust recently led to a lot of interest in developing new paradigms based on hierarchical and distributed models, as a natural evolution from the first weakly distributed hierarchical models that succeeded the centralised paradigm. Thus new models based on management by delegation, the mobile code paradigm, distributed objects and web services came into being. These alternatives have turned out to be enormously robust, flexible and scalable as compared with the traditional management strategies. However, many problems still remain to be solved. Current research lines assume that the distributed hierarchical paradigm has as yet failed to solve many of the problems related to robustness, scalability and flexibility and advocate migration towards a strongly distributed cooperative paradigm. These lines of research were spawned by Distributed Artificial Intelligence (DAI) and, specifically, the autonomous agent paradigm and Multi-Agent Systems (MAS). They all revolve around a series of objectives, which can be summarised as achieving greater management functionality autonomy and a greater self-configuration capability, which solves the problems of scalability and the need for supervision that plague current systems, evolving towards strongly distributed and goal-driven cooperative control techniques and semantically enhancing information models. More and more researchers are starting to use agents for network and distributed systems management. However, the boundaries established in their work between mobile agents (that follow the mobile code paradigm) and autonomous agents (that really follow the cooperative paradigm) are fuzzy. Many of these approximations focus on the use of mobile agents, which, as was the case with the above-mentioned mobile code techniques, means that they can inject more dynamism into the traditional concept of management by delegation. Accordingly, they are able to flexibilise management, distribute management logic about data and distribute control. However, they remain within the distributed hierarchical paradigm. While a management architecture faithful to the strongly distributed cooperative paradigm has yet to be defined, these lines of research have revealed that the information, communication and organisation models of existing management architectures are far from adequate. In this context, this dissertation presents an architectural model for the holonic management of distributed systems and services through autonomous agent societies. The main objectives of this model are to raise the level of management task automation, increase the scalability of management solutions, provide support for delegation by both domains and macro-tasks and achieve a high level of interoperability in open environments. Bearing in mind these objectives, a descriptive logic-based formal semantic information model has been developed, which increases management automation by using rational autonomous agents capable of reasoning, inferring and dynamically integrating knowledge and services conceptualised by means of the CIM model and formalised at the semantic level by means of descriptive logic. The information model also includes a mapping, at the CIM metamodel level, to the OWL ontology specification language, which amounts to a significant advance in the field of XML-based model and metainformation representation and exchange. At the interaction level, the model introduces a formal specification language (ACSL) of conversations between agents based on speech act theory and contributes an operational semantics for this language that eases the task of verifying formal properties associated with the interaction protocol. A role-oriented holonic organisational model has also been developed, whose main features meet the requirements demanded by emerging distributed services, including no centralised control, dynamic restructuring capabilities, cooperative skills and facilities for adaptation to different organisational cultures. The model includes a normative submodel adapted to management holon autonomy and based on the deontic and action modal logics.