4 resultados para Bajo este sol tremendo

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

El interés por los sistemas fotovoltaicos de concentración (CPV) ha resurgido en los últimos años amparado por el desarrollo de células multiunión de muy alta eficiencia basadas en semiconductores de los grupos III-V. Estas células han permitido obtener módulos de concentración con eficiencias que prácticamente duplican las del panel plano y que llegan al 35% en los módulos récord. Esta tesis está dedicada al diseño y la implementación experimental de nuevos conceptos que permitan obtener módulos CPV que no sólo alcancen una eficiencia alta en condiciones estándar sino que, además, sean lo suficientemente tolerantes a errores de montaje, seguimiento, temperatura y variaciones espectrales para que la energía que producen a lo largo del año sea máxima. Una de las primeras cuestiones que se abordan es el diseño de elementos ópticos secundarios para sistemas cuyo primario es una lente de Fresnel y que permiten, para una concentración fija, aumentar el ángulo de aceptancia y la tolerancia del sistema. Varios secundarios reflexivos y refractivos han sido diseñados y analizados mediante trazado de rayos. En particular, utilizando óptica anidólica y basándose en el diseño de una sola etapa conocido como ‘concentrador dieléctrico que funciona por reflexión total interna‘, se ha diseñado, fabricado y caracterizado un secundario con salida cuadrada que, usado junto con una lente de Fresnel, permite alcanzar simultáneamente una elevada eficiencia, concentración y aceptancia. Además, se ha propuesto y prototipado un método alternativo de fabricación para otro de los secundarios, denominado domo, consistente en el sobremoldeo de silicona sobre células solares. Una de las características que impregna todo el trabajo realizado en esta tesis es la aproximación holística en el diseño de módulos CPV, es decir, se ha prestado especial atención al diseño conjunto de la célula y la óptica para garantizar que el sistema total alcance la mayor eficiencia posible. En este sentido muchos sistemas ópticos desarrollados en esta tesis han sido diseñados, caracterizados y optimizados teniendo en cuenta que el ajuste de corriente entre las distintas subcélulas que comprenden la célula multiunión bajo el concentrador sea muy próximo a uno. La capa antirreflectante sobre la célula funciona, en cierto modo, como interfaz entre la óptica y la célula, por lo que se ha diseñado un método de optimización de capas antirreflectantes que considera no sólo el amplio rango de longitudes de onda para el que las células multiunión son sensibles sino también la distribución angular de intensidad sobre la célula creada por la óptica de concentración. Además, la cuestión de la falta de uniformidad también se ha abordado mediante la comparación de las distribuciones espectrales y espaciales de irradiancia que crean diferentes ópticas (simuladas mediante trazado de rayos y fotografiadas) y las pérdidas de eficiencia que experimentan las células iluminadas por dichas ópticas de concentración medidas experimentalmente. El efecto de la temperatura en la óptica de concentración también ha sido objeto de estudio de esta tesis. En particular, mediante simulaciones de elementos finitos se han dado los primeros pasos para el análisis de las deformaciones que sufren los dientes de las lentes de Fresnel híbridas (vidrio-silicona), así como el cambio de índice de refracción con la temperatura y la influencia de ambos efectos sobre el funcionamiento de los sistemas. Se ha implementado un modelo que tiene por objeto considerar las variaciones ambientales, principalmente temperatura y contenido espectral de la radiación directa, así como las sensibilidades térmica y espectral de los sistemas CPV, con el fin de maximizar la energía producida por un módulo de concentración a lo largo de un año en un emplazamiento determinado. Los capítulos 5 y 6 de este libro están dedicados al diseño, fabricación y caracterización de un nuevo concepto de módulo fotovoltaico denominado FluidReflex y basado en una única etapa reflexiva con dieléctrico fluido. En este nuevo concepto la presencia del fluido aporta algunas ventajas significativas como son: un aumento del producto concentración por aceptancia (CAP, en sus siglas en inglés) alcanzable al rodear la célula con un medio cuyo índice de refracción es mayor que uno, una mejora de la eficiencia óptica al disminuir las pérdidas por reflexión de Fresnel en varias interfaces, una mejora de la disipación térmica ya que el calor que se concentra junto a la célula se trasmite por convección natural y conducción en el fluido y un aislamiento eléctrico mejorado. Mediante la construcción y medida de varios prototipos de unidad elemental se ha demostrado que no existe ninguna razón fundamental que impida la implementación práctica del concepto teórico alcanzando una elevada eficiencia. Se ha realizado un análisis de fluidos candidatos probando la existencia de al menos dos de ellos que cumplen todos los requisitos (en particular el de estabilidad bajo condiciones de luz concentrada) para formar parte del sistema de concentración FluidReflex. Por ´ultimo, se han diseñado, fabricado y caracterizado varios prototipos preindustriales de módulos FluidReflex para lo cual ha sido necesario optimizar el proceso de fabricación de la óptica multicavidad a fin de mantener el buen comportamiento óptico obtenido en la fabricación de la unidad elemental. Los distintos prototipos han sido medidos, tanto en el laboratorio como bajo el sol real, analizando el ajuste de corriente de la célula iluminada por el concentrador FluidReflex bajo diferentes distribuciones espectrales de la radiación incidente así como el excelente comportamiento térmico del módulo. ABSTRACT A renewed interest in concentrating photovoltaic (CPV) systems has emerged in recent years encouraged by the development of high-efficiency multijunction solar cells based in IIIV semiconductors that have led to CPV module efficiencies which practically double that of flat panel PV and which reach 35% for record modules. This thesis is devoted to the design and experimental implementation of new concepts for obtaining CPV modules that not only achieve high efficiency under standard conditions but also have such a wide tolerance to assembly errors, tracking, temperature and spectral variations, that the energy generated by them throughout the year is maximized. One of the first addressed issues is the design of secondary optical elements whose primary optics is a Fresnel lens and which, for a fixed concentration, allow an increased acceptance angle and tolerance of the system. Several reflective and refractive secondaries have been designed and analyzed using ray tracing. In particular, using nonimaging optics and based on the single-stage design known as ‘dielectric totally internally reflecting concentrator’, a secondary with square output has been designed, fabricated and characterized. Used together with a Fresnel lens, the secondary can simultaneously achieve high efficiency, concentration and acceptance. Furthermore, an alternative method has been proposed and prototyped for the fabrication of the secondary named dome. The optics is manufactured by direct overmolding of silicone over the solar cells. One characteristic that permeates all the work done in this thesis is the holistic approach in the design of CPV modules, meaning that special attention has been paid to the joint design of the solar cell and the optics to ensure that the total system achieves the highest attainable efficiency. In this regard, many optical systems developed in the thesis have been designed, characterized and optimized considering that the current matching among the subcells within the multijunction solar cell beneath the optics must be close to one. Antireflective coating over the cell acts, somehow, as an interface between the optics and the cell. Consequently, a method has been designed to optimize antireflective coatings that takes into account not only the broad wavelength range that multijunction solar cells are sensitive to but also the angular intensity distribution created by the concentrating optics. In addition, the issue of non-uniformity has also been addressed by comparing the spectral and spatial distributions of irradiance created by different optics (simulated by ray tracing and photographed) and the efficiency losses experienced by cells illuminated by those concentrating optics experimentally determined. The effect of temperature on the concentrating optics has also been studied in this thesis. In particular, finite element simulations have been use to analyze the deformations experienced by the facets of hybrid (silicon-glass) Fresnel lenses, the change of refractive index with temperature and the influence of both effects on the system performance. A model has been implemented which take into consideration atmospheric variations, mainly temperature and spectral content of the direct normal irradiance, as well as thermal and spectral sensitivities of systems, with the aim of maximizing the energy harvested by a CPV module throughout the year in a particular location. Chapters 5 and 6 of this book are devoted to the design, fabrication, and characterization of a new concentrator concept named FluidReflex and based on a single-stage reflective optics with fluid dielectric. In this new concept, the presence of the fluid provides some significant advantages such as: an increased concentration acceptance angle product (CAP) achievable by surrounding the cell with a medium whose refractive index is greater than one, an improvement of the optical efficiency by reducing losses due to Fresnel reflection at several interfaces, an improvement in heat dissipation as the heat concentrated near the cell is transmitted by natural convection and conduction in the fluid, and an improved electrical insulation. By fabricating and characterizing several elementary-unit prototypes it was shown that there is no fundamental reason that prevents the practical implementation of this theoretical concept reaching high efficiency. Several fluid candidates were investigated proving the existence of at least to fluids that meet all the requirements (including the stability under concentrated light) to become part of the FluidReflex concentrator. Finally, several pre-industrial FluidReflex module prototypes have been designed and fabricated. An optimization process for the manufacturing of the multicavity optics was necessary to attain such an optics quality as the one achieved by the single unit. The module prototypes have been measured, both indoors and outdoors, analyzing the current matching of the solar cells beneath the concentrator for different spectral distribution of the incident irradiance. Additionally, the module showed an excellent thermal performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerosos estudiantes ven el estudio como algo aburrido, se sienten desmotivados. El docente no puede limitarse a aceptar la situación como un espectador. Es nuestra realidad y de la misma forma que cada estudiante debe responsabilizarse de su propia educación, los profesores tenemos que responsabilizarnos de cambiar ese sentimiento. Para ello se analizará en primer lugar el significado del término motivación y cuáles son los factores en los que los profesores podemos influir. Se verá que una de las formas de intervención es la innovación, por lo que también se analizará el vocablo y se discutirá qué constituye innovación y qué no. Por tanto, el docente se enfrenta a diario con la necesidad de encontrar nuevas formas de enseñar, que capten la atención de los alumnos. Se dice que no hay nada nuevo bajo el sol; sin embargo, hay que ser capaz de encontrar nuevos usos a con recursos que ya existen. Con el presente trabajo se pretende dar respuesta a esa necesidad. Se plantea el uso de una metodología que propone una innovación continua que consiste en establecer un paralelismo entre un relato o una historia y una unidad didáctica de la asignatura de Tecnología. Como historia se ha escogido la conocida película “La Guerra de las Galaxias” y el curso de referencia será el primer curso de Educación Secundaria Obligatoria (1º E.S.O.). En concreto se presenta un material adaptado con fotografías de la película, ejemplos inspirados en la saga y otras adaptaciones educativas. Con ello se consigue una sorpresa continua para el estudiante y así mantener su atención, facilitando su aprendizaje. Se tiene hecho parte del camino, aunque no todo. En este punto, se hace necesario introducir algunas medidas suplementarias, que refuercen y complementen esta metodología y que nos impidan apartarnos del objetivo pretendido: que los alumnos aprendan de manera significativa. ¿Quién dijo que estudiar es aburrido? A number of students see studying as something boring. The teacher cannot be a spectator. It is our reality and, so on one hand, the student has the responsibility of building his education and on the other, the teacher must change that feeling. In order to this, the term motivation will be analysed, and also which are the related aspects in which we have some influence. One of those ways of intervention is motivation. It is for that word, innovation will be analysed as well, discussing what innovation is and what is not. Therefore, teachers face, day by day, the need of finding new ways of teaching for students to pay attention in classes. As people say, there is nothing new under the sun; however, new uses for existing resources are required. This paper pretends to solve that problem. A continuous innovating methodology is set, consisting in establishing a parallelism between a story or tale and a didactic unit in Technology subject. As a story, the well-known film “Star Wars” is chosen, and as a reference course, the first course of Educación Secundaria Obligatoria (1st E.S.O.). Specifically, we introduce an adapted material with pictures from the movie, saga inspired examples and, some other educational adaptations. With it, students are continuously surprised and their attention grabbed, making his learning easier. Part of the problem is solved, but there is a long way to go. At this point, some supplementary steps are needed, in order to enforce and complement this methodology, and to avoid getting far away from the attempted objective: students learning in a significant way. Who said studying is annoying?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tesis estudia el Pabellón de los Países Nórdicos (1958-1962), uno de los ejemplos más significativos de la obra del arquitecto Sverre Fehn (1924-2009). El Pabellón es el resultado de la obtención del primer premio en el concurso de ideas restringido convocado en 1958 por un comité formado por los gobiernos de Suecia, Finlandia y Noruega, cuya finalidad era la creación de un espacio en el recinto de la Bienal de Venecia que albergara las exposiciones bianuales de estos paises. El elemento más característico de esta obra es su cubierta, un tamiz denso de dos capas de vigas de hormigón superpuestas que se interrumpe puntualmente para permitir el paso de los árboles que viven en su interior. Su espesor de dos metros bloquea los rayos de luz directa de forma que se genera un plano de iluminación difusa. Esta configuración de la cubierta resuelve los dos condicionantes principales del proyecto: la creación de un espacio expositivo flexible y la preservación de los árboles de mayor porte. Bajo el plano superior filtrante, se genera un espacio horizontal en continuidad física y sensorial con la arboleda en la que se asienta, caracterizado por la variación lumínica a lo largo del día. Los objetivos de esta tesis son contribuir a un conocimiento amplio y riguroso del Pabellón Nórdico, y explicar el singular espacio que propone. Para lograr estos objetivos, el primer paso ha consistido en la elaboración de las bases del estudio de esta obra, mediante la recopilación y selección de la documentación existente -que en gran parte permanece inédita hasta la fecha- y la aportación de nuevos planos que completen fases no documentadas: el estado construído y el estado actual de la obra. Se parte de la hipótesis de que todas las decisiones de proyecto -el vínculo con el lugar, la incorporación de las preexistencias, la respuesta al programa y la construcción- son consecuencia de la acción de la cubierta y se derivan del hecho de la filtración de la luz. En el Pabellón, la iluminación cenital y espacio horizontal en continuidad con el entorno se aunan de forma insólita. El curso de la investigación está guiado por la búsqueda de las cualidades de un espacio planteado con su límite superior permeable -cubierta filtrante- y por el debilitamiento de algunos de sus límites verticales. La tesis se estructura en tres capítulos principales -crónica, re-construcción y re-lectura-, que abordan la descripción, el análisis y la síntesis del Pabellón de acuerdo con la metodología de la investigación seguida. La crónica se dedica a la descripción exhaustiva de la sede nórdica desde varios puntos de vista. El objetivo de este capítulo es el de ubicar la obra en su contexto y facilitar la comprensión del conjunto de los aspectos y condicionantes que determinaron la formalización del Pabellón. El capítulo comienza con una síntesis de las circunstancias que desencadenaron la convocatoria del concurso. El apartado pormenoriza el programa propuesto por el comité nórdico y las propuestas presentadas por cada uno de los arquitectos invitados a participar en el concurso de cada país promotor: el noruego Sverre Fehn, el sueco Klas Anshelm y el finés Reima Piëtila. A continuación se explica el desarrollo y evolución del proyecto de Fehn y las fases que atraviesa la obra hasta su materialización, así como los cambios y modificaciones más relevantes que el edificio ha experimentado hasta nuestros días. Este apartado finaliza con una descripción de la sede como espacio expositivo desde su inauguración hasta la actualidad y cómo se ha ido adaptando a tal uso. La re-construcción aborda el análisis de la obra a partir de la disección de su identidad en cuatro aspectos elementales: su relación con el lugar y las preexistencias, la respuesta que el proyecto ofrece al programa planteado, las cualidades del espacio que genera la luz filtrada por la cubierta y la construcción desde los puntos de vista del proceso, el sistema y la materialidad. En estas parcelas se pretende identificar los elementos que constituyen la naturaleza, la organización espacial y la formalización del Pabellón y veremos que todos ellos están relacionados con su singular cubierta y con el fenómeno de la filtración de la luz. La re-lectura ofrece una mirada crítica del Pabellón en base a un análisis comparativo de la obra con un panorama de referencias que plantean los mismos temas arquitectónicos. En este capítulo se busca profundizar en los aspectos fundamentales del proyecto que se derivan del estudio realizado previamente, y así obtener una lectura más profunda los conceptos desarrollados por Fehn y su alcance. Uno de los temas de mayor importancia que acomete Fehn en esta obra es la interacción entre arquitectura y árbol. Se revisa la incidencia que tiene sobre el trazado de la planta la ocupación previa de árboles en el solar, así como las diferentes posturas que adopta la arquitectura ante este hecho. Se estudian algunos casos representativos de obras que establecen un vínculo de interdependencia con la fronda preexistente y la incorporan al proyecto como un estrato más del límite. Por último, se enumeran las consecuencias de la incorporación del árbol al espacio interior y las dificultades o beneficios que surgen de esta coexistencia. El segundo gran tema que se deriva del estudio del Pabellón es la búsqueda de un espacio expositivo flexible basado en la diafanidad, la iluminación natural homogénea y la apertura física al parque. En primer lugar se analiza la planta liberada de las servidumbres de estructura, instalaciones, espacios servidores y accesos fijos como soporte de la versatilidad de uso, así como la ocupación del espacio diáfano. En segundo lugar establecemos un análisis comparativo de la configuración del filtro lumínico en otras cubiertas que, al igual que el Pabellón, también persiguen la generación de una iluminación homogénea. Por último se analiza el grado de apertura física del espacio interior al exterior y los niveles de relación que se establecen con el espacio público circundante. La relectura finaliza con el estudio del Pabellón en el contexto de los espacios expositivos de Sverre Fehn para comprender la singularidad de este edificio en el conjunto de la obra del arquitecto noruego y comprobar cómo se plantean en los casos estudiados la exhibición del objeto, el recorrido y la luz. El desarrollo de esta tesis en torno al Pabellón está motivada por la consideración de que constituye un ejemplo en el que se condensan valores fundamentales de la arquitectura. Esta obra propone un espacio antimonumental que interactúa con las personas y que está caracterizada por la manipulación de los límites físicos, el compromiso con el programa, las preexistencias y el lugar donde se implanta. Representa un proyecto rotundo cuya estructura y sistema de relaciones se fundamenta en el plano de la realidad concreta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desde hace ya algunos años la búsqueda de energías alternativas a los combustibles fósiles es uno de los grandes retos a nivel mundial. Según los datos de la Agencia Estadounidense de Información sobre la Energía (EIA), el consumo energético en el mundo fue de 18 TW en 2015 y se espera que este consumo se dispare hasta alcanzar los 25 TW en 2035 y los 30 TW en 2050. Parece, por tanto, necesario dar respuesta a esta demanda creciente, y no solo considerar de dónde va a proceder esta energía sino también cuáles van a ser las consecuencias derivadas de este aumento en el consumo energético. Ya en el año 2007 la Academia Sueca reconoció, con la concesión del Premio Nobel de la Paz al ex vicepresidente de Estados Unidos Al Gore y al Grupo Intergubernamental de expertos sobre Cambio Climático (IPCC) de Naciones Unidas, la necesidad de concienciación de que el modelo de desarrollo que tenemos es ecológicamente insostenible. En este contexto, las energías renovables en general y, la energía solar en particular, tienen mucho que ofrecer. Una de las mayores ventajas de la energía solar respecto a las otras fuentes de energía es su enorme potencial, que los investigadores que trabajan en este campo resumen con la siguiente afirmación: la cantidad de energía solar que la Tierra recibe en una hora es mayor que el consumo mundial en el planeta durante todo un año. Al hablar de energía solar se suele distinguir entre energía solar térmica y energía solar fotovoltaica; la primera consiste en aprovechar la energía del sol para convertirla en calor, mientras que la segunda pretende transformar la radiación solar en electricidad por medio de unos dispositivos llamados células fotovoltaicas. Y es precisamente en este campo donde se centra este proyecto. El fundamento científico en el que se basan las células fotovoltaicas es el efecto fotoeléctrico, descubierto por Becquerel en 1839. No obstante, tendrían que pasar más de cien años hasta que investigadores de los laboratorios Bell en 1954 desarrollaran una célula de silicio monocristalino con un rendimiento del 6%. Y en 1958, con el lanzamiento del satélite Vangard I equipado con paneles solares se pudo demostrar la viabilidad de esta tecnología. Desde entonces, la investigación en esta área ha permitido desarrollar dispositivos con eficiencias superiores al 20%. No obstante, la fotovoltaica tradicional basada en elementos semiconductores tipo silicio presenta algunos inconvenientes como el impacto visual de los parques solares, los costes elevados o los rendimientos no muy altos. El descubrimiento de materiales orgánicos semiconductores, reconocido con el Premio Nobel de Química a Heeger, MacDiarmid y Shirakawa en 1976, ha permitido ampliar el campo de la fotovoltaica, ofreciendo la posibilidad de desarrollar células solares orgánicas frente a las células tradicionales inorgánicas. Las células fotovoltaicas orgánicas resultan atractivas ya que, en principio, presentan ventajas como reducción de costes y facilidad de procesado: los materiales orgánicos se pueden elaborar mediante procesos de impresión y recubrimiento de alta velocidad, aerosoles o impresión por inyección y se podrían aplicar como una pintura sobre superficies, tejados o edificios. La transformación de la energía solar en corriente eléctrica es un proceso que transcurre en varias etapas: 1. Absorción del fotón por parte del material orgánico. 2. Formación de un excitón (par electrón-hueco), donde el electrón, al absorber el fotón, es promovido a un nivel energético superior dejando un hueco en el nivel energético en el que se encontraba inicialmente. 3. Difusión del excitón, siendo muy decisiva la morfología del dispositivo. 4. Disociación del excitón y transporte de cargas, lo que requiere movilidades altas de los portadores de cargas. 5. Recolección de cargas en los electrodos. En el diseño de las células solares orgánicas, análogamente a los semiconductores tipo p y tipo n inorgánicos, se suelen combinar dos tipos de materiales orgánicos: un material orgánico denominado dador, que absorbe el fotón y que a continuación deberá ceder el electrón a un segundo material orgánico, denominado aceptor. Para que la célula resulte eficaz es necesario que se cumplan simultáneamente varios requisitos: 1. La energía del fotón incidente debe ser superior a la diferencia de energía entre los orbitales frontera del material orgánico, el HOMO (orbital molecular ocupado de más alta energía) y el LUMO (orbital desocupado de menor energía). Para ello, se necesitan materiales orgánicos semiconductores que presenten una diferencia de energía entre los orbitales frontera (ELUMO-EHOMO= band gap) menor de 2 eV. Materiales orgánicos con estas características son los polímeros conjugados, donde alternan dobles enlaces carbono-carbono con enlaces sencillos carbono-carbono. Uno de los polímeros orgánicos más utilizados como material dador es el P3HT (poli-3-hexiltiofeno). 2. Tanto el material orgánico aceptor como el material orgánico dador deben presentar movilidades altas para los portadores de carga, ya sean electrones o huecos. Este es uno de los campos en los que los materiales orgánicos se encuentran en clara desventaja frente a los materiales inorgánicos: la movilidad de electrones en el silicio monocristalino es 1500 cm2V-1s-1 y en el politiofeno tan solo 10-5 cm2V-1s-1. La movilidad de los portadores de carga aparece muy relacionada con la estructura del material, cuanto más cristalino sea el material, es decir, cuanto mayor sea su grado de organización, mejor será la movilidad. Este proyecto se centra en la búsqueda de materiales orgánicos que puedan funcionar como dadores en el dispositivo fotovoltaico. Y en lugar de centrarse en materiales de tipo polimérico, se ha preferido explorar otra vía: materiales orgánicos semiconductores pero con estructura de moléculas pequeñas. Hay varias razones para intentar sustituir los materiales poliméricos por moléculas pequeñas como, por ejemplo, la difícil reproducibilidad de resultados que se encuentra con los materiales poliméricos y su baja cristalinidad, en general. Entre las moléculas orgánicas sencillas que pudieran ser utilizadas como el material dador en una célula fotovoltaica orgánica llama la atención el atractivo de las moléculas de epindolidiona y quinacridona. En los dos casos se trata de moléculas planas, con enlaces conjugados y que presentan anillos condensados, cuatro en el caso de la epindolidiona y cinco en el caso de la quinacridona. Además ambos compuestos aparecen doblemente funcionalizados con grupos dadores de enlace de hidrógeno (NH) y aceptores (grupos carbonilo C=O). Por su estructura, estas moléculas podrían organizarse tanto en el plano, mediante la formación de varios enlaces de hidrógeno intermoleculares, como en apilamientos verticales tipo columnar, por las interacciones entre las superficies de los anillos aromáticos que forman parte de su estructura (tres en el caso de la quinacridona) y dos (en el caso de la epindolidiona). Esta organización debería traducirse en una mayor movilidad de portadores de carga, cumpliendo así con uno de los requisitos de un material orgánico para su aplicación en fotovoltaica. De estas dos moléculas, en este trabajo se profundiza en las moléculas tipo quinacridona, ya que el desarrollo de las moléculas tipo epindolidiona se llevó a cabo en un proyecto de investigación financiado por una beca Repsol y concedida a Guillermo Menéndez, alumno del Grado en Tecnologías Industriales de esta escuela. La quinacridona es uno de los pigmentos más utilizados y se estima que la venta anual de los mismos alcanza las 4.000 toneladas por año. Son compuestos muy estables tanto desde el punto de vista térmico como fotoquímico y su síntesis no resulta excesivamente compleja. Son además compuestos no tóxicos y la legislación autoriza su empleo en cosméticos y juguetes para niños. El inconveniente principal de la quinacridona es su elevada insolubilidad (soluble en ácido sulfúrico concentrado), por lo que aunque resulta un material muy atractivo para su aplicación en fotovoltaica, resulta difícil su implementación. De hecho, solo es posible su incorporación en dispositivos fotovoltaicos funcionalizando la quinacridona con algún grupo lábil que le proporcione la suficiente solubilidad para poder ser aplicado y posteriormente eliminar dicho grupo lábil. La propuesta inicial de este proyecto es intentar desarrollar quinacridonas que sean solubles en los disolventes orgánicos más habituales tipo cloruro de metileno o cloroformo, para de este modo poder cumplir con una de las ventajas que, a priori, ofrecen las células fotovoltaicas orgánicas frente a las inorgánicas, como es la facilidad de su procesado. El objetivo se centra, por lo tanto, en la preparación de quinacridonas solubles pero sin renunciar a su capacidad para formar enlaces de hidrógeno ni a su capacidad de apilamiento π-π, ya que se quiere mantener los valores de movilidad de portadores para la quinacridona (movilidad de huecos 0,2 cm2V-1s-1). En primer lugar se intenta la preparación de una quinacridona que presenta la ventaja de que los materiales de partida para su síntesis son comerciales: a partir del succinato de dimetilo y de 4-tetradecilanilina se podía acceder, en una síntesis de cuatro etapas, a la molécula deseada. La elección de la amina aromática con la sustitución en posición 4 presenta la ventaja de que en la etapa de doble ciclación necesaria en la síntesis, solo se forma uno de los regioisómeros posibles; este hecho es de gran relevancia para conseguir compuestos con altas movilidades, ya que la presencia de mezcla de regioisómeros, como se ha demostrado con otros compuestos como el P3HT, reduce considerablemente la movilidad de los portadores. Se obtiene así una quinacridona funcionalizada con dos cadenas lineales de 14 carbonos cada una en posiciones simétricas sobre los anillos aromáticos de los extremos. Se espera que la presencia de la superficie aromática plana y las dos cadenas lineales largas pueda conducir a una organización del material similar a la de un cristal líquido discótico. Sin embargo, el producto obtenido resulta ser tremendamente insoluble, no siendo suficiente las dos cadenas de 14 carbonos para aumentar su solubilidad respecto a la quinacridona sin funcionalizar. Se prepara entonces un derivado de esta quinacridona por alquilación de los nitrógenos. Este derivado, incapaz de formar enlaces de hidrógeno, resulta ser fácilmente soluble lo que proporciona una idea de la importancia de los enlaces de hidrógeno en la organización del compuesto. La idea inicial es conseguir, con una síntesis lo más sencilla posible, una quinacridona soluble, por lo que se decide utilizar la 4-t-butilanilina, también comercial, en lugar de la 4-tetradecilanilina. La cadena de t-butilo solo aporta cuatro átomos de carbono, pero su disposición (tres grupos metilo sobre un mismo átomo de carbono) suele conducir a resultados muy buenos en términos de solubilidad. Otra vez, la incorporación de los dos grupos t-butilo resulta insuficiente en términos de solubilidad del material. En estos momentos, y antes de explorar otro tipo de modificaciones sobre el esqueleto de quinacridona, en principio más complejos, se piensa en utilizar una amina aromática funcionalizada en la posición adyacente a la amina, de manera que el grupo funcional cumpliera una doble misión: por una parte, proporcionar solubilidad y por otra parte, perturbar ligeramente la formación de enlaces de hidrógeno, que han evidenciado ser una de las causas fundamentales para la insolubilidad del compuesto. Se realiza un análisis sobre cuáles podrían ser los grupos funcionales más idóneos en esta posición, valorando dos aspectos: el impedimento estérico que dificultaría la formación de enlaces de hidrógeno y la facilidad en su preparación. Ello conduce a optar por un grupo tioéter como candidato, ya que el 2-aminobencenotiol es un compuesto comercial y su adecuada funcionalización conduciría a una anilina con las propiedades deseadas. Se realiza simultáneamente la preparación de una quinacridona con una cadena de 18 átomos de carbono y otra quinacridona de cadena corta pero ramificada. Y finalmente, con estas quinacridonas se logra obtener compuestos solubles. Por último, se realiza el estudio de sus propiedades ópticas, mediante espectroscopia UV-Visible y fluorescencia, y se determinan experimentalmente los band gap, que se aproximan bastante a los resultados teóricos, en torno a 2,2 eV en disolución. No obstante, y aun cuando el band gap pueda parecer algo elevado, se sabe que en disolución las barreras energéticas son más elevadas que cuando el material se deposita en film. Por otra parte, todas las quinacridonas sintetizadas han demostrado una elevada estabilidad térmica. Como resumen final, el trabajo que aquí se presenta, ha permitido desarrollar una ruta sintética hacia derivados de quinacridona solubles con buenas perspectivas para su aplicación en dispositivos fotovoltaicos.