17 resultados para BRAIN-REGIONS

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

La investigación para el conocimiento del cerebro es una ciencia joven, su inicio se remonta a Santiago Ramón y Cajal en 1888. Desde esta fecha a nuestro tiempo la neurociencia ha avanzado mucho en el desarrollo de técnicas que permiten su estudio. Desde la neurociencia cognitiva hoy se explican muchos modelos que nos permiten acercar a nuestro entendimiento a capacidades cognitivas complejas. Aun así hablamos de una ciencia casi en pañales que tiene un lago recorrido por delante. Una de las claves del éxito en los estudios de la función cerebral ha sido convertirse en una disciplina que combina conocimientos de diversas áreas: de la física, de las matemáticas, de la estadística y de la psicología. Esta es la razón por la que a lo largo de este trabajo se entremezclan conceptos de diferentes campos con el objetivo de avanzar en el conocimiento de un tema tan complejo como el que nos ocupa: el entendimiento de la mente humana. Concretamente, esta tesis ha estado dirigida a la integración multimodal de la magnetoencefalografía (MEG) y la resonancia magnética ponderada en difusión (dMRI). Estas técnicas son sensibles, respectivamente, a los campos magnéticos emitidos por las corrientes neuronales, y a la microestructura de la materia blanca cerebral. A lo largo de este trabajo hemos visto que la combinación de estas técnicas permiten descubrir sinergias estructurofuncionales en el procesamiento de la información en el cerebro sano y en el curso de patologías neurológicas. Más específicamente en este trabajo se ha estudiado la relación entre la conectividad funcional y estructural y en cómo fusionarlas. Para ello, se ha cuantificado la conectividad funcional mediante el estudio de la sincronización de fase o la correlación de amplitudes entre series temporales, de esta forma se ha conseguido un índice que mide la similitud entre grupos neuronales o regiones cerebrales. Adicionalmente, la cuantificación de la conectividad estructural a partir de imágenes de resonancia magnética ponderadas en difusión, ha permitido hallar índices de la integridad de materia blanca o de la fuerza de las conexiones estructurales entre regiones. Estas medidas fueron combinadas en los capítulos 3, 4 y 5 de este trabajo siguiendo tres aproximaciones que iban desde el nivel más bajo al más alto de integración. Finalmente se utilizó la información fusionada de MEG y dMRI para la caracterización de grupos de sujetos con deterioro cognitivo leve, la detección de esta patología resulta relevante en la identificación precoz de la enfermedad de Alzheimer. Esta tesis está dividida en seis capítulos. En el capítulos 1 se establece un contexto para la introducción de la connectómica dentro de los campos de la neuroimagen y la neurociencia. Posteriormente en este capítulo se describen los objetivos de la tesis, y los objetivos específicos de cada una de las publicaciones científicas que resultaron de este trabajo. En el capítulo 2 se describen los métodos para cada técnica que fue empleada: conectividad estructural, conectividad funcional en resting state, redes cerebrales complejas y teoría de grafos y finalmente se describe la condición de deterioro cognitivo leve y el estado actual en la búsqueda de nuevos biomarcadores diagnósticos. En los capítulos 3, 4 y 5 se han incluido los artículos científicos que fueron producidos a lo largo de esta tesis. Estos han sido incluidos en el formato de la revista en que fueron publicados, estando divididos en introducción, materiales y métodos, resultados y discusión. Todos los métodos que fueron empleados en los artículos están descritos en el capítulo 2 de la tesis. Finalmente, en el capítulo 6 se concluyen los resultados generales de la tesis y se discuten de forma específica los resultados de cada artículo. ABSTRACT In this thesis I apply concepts from mathematics, physics and statistics to the neurosciences. This field benefits from the collaborative work of multidisciplinary teams where physicians, psychologists, engineers and other specialists fight for a common well: the understanding of the brain. Research on this field is still in its early years, being its birth attributed to the neuronal theory of Santiago Ramo´n y Cajal in 1888. In more than one hundred years only a very little percentage of the brain functioning has been discovered, and still much more needs to be explored. Isolated techniques aim at unraveling the system that supports our cognition, nevertheless in order to provide solid evidence in such a field multimodal techniques have arisen, with them we will be able to improve current knowledge about human cognition. Here we focus on the multimodal integration of magnetoencephalography (MEG) and diffusion weighted magnetic resonance imaging. These techniques are sensitive to the magnetic fields emitted by the neuronal currents and to the white matter microstructure, respectively. The combination of such techniques could bring up evidences about structural-functional synergies in the brain information processing and which part of this synergy fails in specific neurological pathologies. In particular, we are interested in the relationship between functional and structural connectivity, and how two integrate this information. We quantify the functional connectivity by studying the phase synchronization or the amplitude correlation between time series obtained by MEG, and so we get an index indicating similarity between neuronal entities, i.e. brain regions. In addition we quantify structural connectivity by performing diffusion tensor estimation from the diffusion weighted images, thus obtaining an indicator of the integrity of the white matter or, if preferred, the strength of the structural connections between regions. These quantifications are then combined following three different approaches, from the lowest to the highest level of integration, in chapters 3, 4 and 5. We finally apply the fused information to the characterization or prediction of mild cognitive impairment, a clinical entity which is considered as an early step in the continuum pathological process of dementia. The dissertation is divided in six chapters. In chapter 1 I introduce connectomics within the fields of neuroimaging and neuroscience. Later in this chapter we describe the objectives of this thesis, and the specific objectives of each of the scientific publications that were produced as result of this work. In chapter 2 I describe the methods for each of the techniques that were employed, namely structural connectivity, resting state functional connectivity, complex brain networks and graph theory, and finally, I describe the clinical condition of mild cognitive impairment and the current state of the art in the search for early biomarkers. In chapters 3, 4 and 5 I have included the scientific publications that were generated along this work. They have been included in in their original format and they contain introduction, materials and methods, results and discussion. All methods that were employed in these papers have been described in chapter 2. Finally, in chapter 6 I summarize all the results from this thesis, both locally for each of the scientific publications and globally for the whole work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Attentional control and Information processing speed are central concepts in cognitive psychology and neuropsychology. Functional neuroimaging and neuropsychological assessment have depicted theoretical models considering attention as a complex and non-unitary process. One of its component processes, Attentional set-shifting ability, is commonly assessed using the Trail Making Test (TMT). Performance in the TMT decreases with increasing age in adults, Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). Besides, speed of information processing (SIP) seems to modulate attentional performance. While neural correlates of attentional control have been widely studied, there are few evidences about the neural substrates of SIP in these groups of patients. Different authors have suggested that it could be a property of cerebral white matter, thus, deterioration of the white matter tracts that connect brain regions related to set-shifting may underlie the age-related, MCI and AD decrease in performance. The aim of this study was to study the anatomical dissociation of attentional and speed mechanisms. Diffusion tensor imaging (DTI) provides a unique insight into the cellular integrity of the brain, offering an in vivo view into the microarchitecture of cerebral white matter. At the same time, the study of ageing, characterized by white matter decline, provides the opportunity to study the anatomical substrates speeded or slowed information processing. We hypothesized that FA values would be inversely correlated with time to completion on Parts A and B of the TMT, but not the derived scores B/A and B-A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the current issues of debate in the study of mild cognitive impairment (MCI) is deviations of oscillatory brain responses from normal brain states and its dynamics. This work aims to characterize the differences of power in brain oscillations during the execution of a recognition memory task in MCI subjects in comparison with elderly controls. Magnetoencephalographic (MEG) signals were recorded during a continuous recognition memory task performance. Oscillatory brain activity during the recognition phase of the task was analyzed by wavelet transform in the source space by means of minimum norm algorithm. Both groups obtained a 77% hit ratio. In comparison with healthy controls, MCI subjects showed increased theta (p < 0.001), lower beta reduction (p < 0.001) and decreased alpha and gamma power (p < 0.002 and p < 0.001 respectively) in frontal, temporal and parietal areas during early and late latencies. Our results point towards a dual pattern of activity (increase and decrease) which is indicative of MCI and specific to certain time windows, frequency bands and brain regions. These results could represent two neurophysiological sides of MCI. Characterizing these opposing processes may contribute to the understanding of the disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50–100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well established that aesthetic appreciation is related with activity in several different brain regions. The identification of the neural correlates of beauty or liking ratings has been the focus of most prior studies. Not much attention has been directed towards the fact that humans are surrounded by objects that lead them to experience aesthetic indifference or leave them with a negative aesthetic impression. Here we explore the neural substrate of such experiences. Given the neuroimaging techniques that have been used, little is known about the temporal features of such brain activity. By means of magnetoencephalography we registered the moment at which brain activity differed while participants viewed images they considered to be beautiful or not. Results show that the first differential activity appears between 300 and 400 ms after stimulus onset. During this period activity in right lateral orbitofrontal cortex (lOFC) was greater while participants rated visual stimuli as not beautiful than when they rated them as beautiful. We argue that this activity is associated with an initial negative aesthetic impression formation, driven by the relative hedonic value of stimuli regarded as not beautiful. Additionally, our results contribute to the understanding of the nature of the functional roles of the lOFC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The default mode network (DMN) has received growing attention in recent years because it seems to be involved in the neuropathology of psychiatric and neurodegenerative disorders such as autism, schizophrenia and Alzheimer Disease. It has been defined as a task negative network, beca use the activity of all its brain regions is increased during the resting state and suspended during external or goal directed tasks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To perceive a coherent environment, incomplete or overlapping visual forms must be integrated into meaningful coherent percepts, a process referred to as ?Gestalt? formation or perceptual completion. Increasing evidence suggests that this process engages oscillatory neuronal activity in a distributed neuronal assembly. A separate line of evidence suggests that Gestalt formation requires top-down feedback from higher order brain regions to early visual cortex. Here we combine magnetoencephalography (MEG) and effective connectivity analysis in the frequency domain to specifically address the effective coupling between sources of oscillatory brain activity during Gestalt formation. We demonstrate that perceptual completion of two-tone ?Mooney? faces induces increased gamma frequency band power (55?71 Hz) in human early visual, fusiform and parietal cortices. Within this distributed neuronal assembly fusiform and parietal gamma oscillators are coupled by forward and backward connectivity during Mooney face perception, indicating reciprocal influences of gamma activity between these higher order visual brain regions. Critically, gamma band oscillations in early visual cortex are modulated by top-down feedback connectivity from both fusiform and parietal cortices. Thus, we provide a mechanistic account of Gestalt perception in which gamma oscillations in feature sensitive and spatial attention-relevant brain regions reciprocally drive one another and convey global stimulus aspects to local processing units at low levels of the sensory hierarchy by top-down feedback. Our data therefore support the notion of inverse hierarchical processing within the visual system underlying awareness of coherent percepts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic exposure to cocaine induces modifications to neurons in the brain regions involved in addiction. Hence, we evaluated cocaine-induced changes in the hippocampal CA1 field in Fischer 344 (F344) and Lewis (LEW) rats, 2 strains that have been widely used to study genetic predisposition to drug addiction, by combining intracellular Lucifer yellow injection with confocal microscopy reconstruction of labeled neurons. Specifically, we examined the effects of cocaine self-administration on the structure, size, and branching complexity of the apical dendrites of CA1 pyramidal neurons. In addition, we quantified spine density in the collaterals of the apical dendritic arbors of these neurons. We found differences between these strains in several morphological parameters. For example, CA1 apical dendrites were more branched and complex in LEW than in F344 rats, while the spine density in the collateral dendrites of the apical dendritic arbors was greater in F344 rats. Interestingly, cocaine self-administration in LEW rats augmented the spine density, an effect that was not observed in the F344 strain. These results reveal significant structural differences in CA1 pyramidal cells between these strains and indicate that cocaine self-administration has a distinct effect on neuron morphology in the hippocampus of rats with different genetic backgrounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal morphology is hugely variable across brain regions and species, and their classification strategies are a matter of intense debate in neuroscience. GABAergic cortical interneurons have been a challenge because it is difficult to find a set of morphological properties which clearly define neuronal types. A group of 48 neuroscience experts around the world were asked to classify a set of 320 cortical GABAergic interneurons according to the main features of their three-dimensional morphological reconstructions. A methodology for building a model which captures the opinions of all the experts was proposed. First, one Bayesian network was learned for each expert, and we proposed an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts was induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts was built. A thorough analysis of the consensus model identified different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types was defined by performing inference in the Bayesian multinet. These findings were used to validate the model and to gain some insights into neuron morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advent of new signal processing methods, such as non-linear analysis techniques, represents a new perspective which adds further value to brain signals' analysis. Particularly, Lempel–Ziv's Complexity (LZC) has proven to be useful in exploring the complexity of the brain electromagnetic activity. However, an important problem is the lack of knowledge about the physiological determinants of these measures. Although acorrelation between complexity and connectivity has been proposed, this hypothesis was never tested in vivo. Thus, the correlation between the microstructure of the anatomic connectivity and the functional complexity of the brain needs to be inspected. In this study we analyzed the correlation between LZC and fractional anisotropy (FA), a scalar quantity derived from diffusion tensors that is particularly useful as an estimate of the functional integrity of myelinated axonal fibers, in a group of sixteen healthy adults (all female, mean age 65.56 ± 6.06 years, intervals 58–82). Our results showed a positive correlation between FA and LZC scores in regions including clusters in the splenium of the corpus callosum, cingulum, parahipocampal regions and the sagittal stratum. This study supports the notion of a positive correlation between the functional complexity of the brain and the microstructure of its anatomical connectivity. Our investigation proved that a combination of neuroanatomical and neurophysiological techniques may shed some light on the underlying physiological determinants of brain's oscillations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here gray and white matter changes after four weeks of videogame practice were analyzed using optimized voxel-based morphometry (VBM), cortical surface and cortical thickness indices, and white matter integrity computed from several projection, commissural, and association tracts relevant to cognition. Beginning with a sample of one hundred young females, twenty right handed participants were recruited for the study and assigned to a practice or a control group carefully matched by their general cognitive ability scores. After the first scan, the practice group played ‘Professor Layton and The Pandora's Box’ 4 h per week during four weeks. A second scan was obtained at the end of practice and intelligence was measured again. Image analyses revealed gray and white matter changes in the practice group. Gray matter changes theoretically relevant for intelligence were observed for the practice group mainly in frontal clusters (Brodmann areas 9 and 10) and also in smaller parietal and temporal regions. White matter findings were focused in the hippocampal cingulum and the inferior longitudinal fasciculus. These gray and white matter changes presumably induced by practice did not interact with intelligence tests' scores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroimage experiments have been essential for identifying active brain networks. During cognitive tasks as in, e.g., aesthetic appreciation, such networks include regions that belong to the default mode network (DMN). Theoretically, DMN activity should be interrupted during cognitive tasks demanding attention, as is the case for aesthetic appreciation. Analyzing the functional connectivity dynamics along three temporal windows and two conditions, beautiful and not beautiful stimuli, here we report experimental support for the hypothesis that aesthetic appreciation relies on the activation of two different networks, an initial aesthetic network and a delayed aesthetic network, engaged within distinct time frames. Activation of the DMN might correspond mainly to the delayed aesthetic network. We discuss adaptive and evolutionary explanations for the relationships existing between the DMN and aesthetic networks and offer unique inputs to debates on the mind/brain interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neurophysiological changes associated with Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) include an increase in low frequency activity, as measured with electroencephalography or magnetoencephalography (MEG). A relevant property of spectral measures is the alpha peak, which corresponds to the dominant alpha rhythm. Here we studied the spatial distribution of MEG resting state alpha peak frequency and amplitude values in a sample of 27 MCI patients and 24 age-matched healthy controls. Power spectra were reconstructed in source space with linearly constrained minimum variance beamformer. Then, 88 Regions of Interest (ROIs) were defined and an alpha peak per ROI and subject was identified. Statistical analyses were performed at every ROI, accounting for age, sex and educational level. Peak frequency was significantly decreased (p < 0.05) in MCIs in many posterior ROIs. The average peak frequency over all ROIs was 9.68 ± 0.71 Hz for controls and 9.05 ± 0.90 Hz for MCIs and the average normalized amplitude was (2.57 ± 0.59)·10−2 for controls and (2.70 ± 0.49)·10−2 for MCIs. Age and gender were also found to play a role in the alpha peak, since its frequency was higher in females than in males in posterior ROIs and correlated negatively with age in frontal ROIs. Furthermore, we examined the dependence of peak parameters with hippocampal volume, which is a commonly used marker of early structural AD-related damage. Peak frequency was positively correlated with hippocampal volume in many posterior ROIs. Overall, these findings indicate a pathological alpha slowing in MCI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although progressive functional brain network disruption has been one of the hallmarks of Alzheimer?s Dis- ease, little is known about the origin of this functional impairment that underlies cognitive symptoms. We in- vestigated how the loss of white matter (WM) integrity disrupts the organization of the functional networks at different frequency bands. The analyses were performed in a sample of healthy elders and mild cognitive im- pairment (MCI) subjects. Spontaneous brain magnetic activity (measured with magnetoencephalography) was characterized with phase synchronization analysis, and graph theory was applied to the functional networks. We identified WM areas (using diffusion weighted magnetic resonance imaging) that showed a statistical de- pendence between the fractional anisotropy and the graph metrics. These regions are part of an episodic mem- ory network and were also related to cognitive functions. Our data support the hypothesis that disruption of the anatomical networks influences the organization at the functional level resulting in the prodromal dementia syndrome of MCI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural connectivity of the brain is considered to encode species-wise and subject-wise patterns that will unlock large areas of understanding of the human brain. Currently, diffusion MRI of the living brain enables to map the microstructure of tissue, allowing to track the pathways of fiber bundles connecting the cortical regions across the brain. These bundles are summarized in a network representation called connectome that is analyzed using graph theory. The extraction of the connectome from diffusion MRI requires a large processing flow including image enhancement, reconstruction, segmentation, registration, diffusion tracking, etc. Although a concerted effort has been devoted to the definition of standard pipelines for the connectome extraction, it is still crucial to define quality assessment protocols of these workflows. The definition of quality control protocols is hindered by the complexity of the pipelines under test and the absolute lack of gold-standards for diffusion MRI data. Here we characterize the impact on structural connectivity workflows of the geometrical deformation typically shown by diffusion MRI data due to the inhomogeneity of magnetic susceptibility across the imaged object. We propose an evaluation framework to compare the existing methodologies to correct for these artifacts including whole-brain realistic phantoms. Additionally, we design and implement an image segmentation and registration method to avoid performing the correction task and to enable processing in the native space of diffusion data. We release PySDCev, an evaluation framework for the quality control of connectivity pipelines, specialized in the study of susceptibility-derived distortions. In this context, we propose Diffantom, a whole-brain phantom that provides a solution to the lack of gold-standard data. The three correction methodologies under comparison performed reasonably, and it is difficult to determine which method is more advisable. We demonstrate that susceptibility-derived correction is necessary to increase the sensitivity of connectivity pipelines, at the cost of specificity. Finally, with the registration and segmentation tool called regseg we demonstrate how the problem of susceptibility-derived distortion can be overcome allowing data to be used in their original coordinates. This is crucial to increase the sensitivity of the whole pipeline without any loss in specificity.