23 resultados para BENCHMARKING
em Universidad Politécnica de Madrid
Resumo:
Owing to the complexity of Ambient Assisted Living (AAL) systems and platforms, the evaluation of AAL solutions is a complex task that will challenge researchers for years to come. However, the analysis and comparison of proposed solutions is paramount to enable us to assess research results in this area. We have thus organized an international contest called EvAAL: Evaluating AAL Systems through Competitive Benchmarking. Its aims are to raise interest within the research and developer communities in the multidisciplinary research fields enabling AAL, and to create benchmarks for the evaluation and comparison of AAL systems.
Resumo:
This paper presents results of the benchmarking of COBAYA3 pin-by-pin for VVER-1000 obtained in the frame of the EU NURISP project. The 3D lattice solver in COBAYA3 uses transport corrected multi-group diffusion approximation with side-dependent interface discontinuity factors of GET or Selengut Black Box type. The objective of this study is to test the few-group calculation scheme when using structur ed and unstructured spatial meshes. Unstructured mesh is necessary to model the water gaps between the hexagonal assemblies. The benchmark problems include pin-by-pin calculations of 2D subsets of the core and comparison with APOLLO2 and TR IPOLI4 transport reference solutions. COBAYA3 solutions in 2, 4 and 8 energy groups have been tested. The results show excellent agreement with the reference on es when using side-dependent interface discontinuity factors.
Resumo:
In this paper we propose a new benchmark to drive making decisions in maintenance of computer systems. This benchmark is made from load average sample data. The main goal is to improve reliability and performance of a set of devices or components. In particular, the stability of the system is measured in terms of variability of the load. A forecast of the behavior of this stability is also proposal as part of the reporting benchmark. At the final stage, a more stable system is obtained and its global reliability and performance can be then evaluated by means of appropriate specifications.
Resumo:
Testbeds proposed so far to evaluate, compare, and eventually improve SPARQL query federation systems have still some limitations. Some variables and con�gurations that may have an impact on the behavior of these systems (e.g., network latency, data partitioning and query properties) are not su�ciently de�ned; this a�ects the results and repeatability of independent evaluation studies, and hence the insights that can be obtained from them. In this paper we evaluate FedBench, the most comprehensive testbed up to now, and empirically probe the need of considering additional dimensions and variables. The evaluation has been conducted on three SPARQL query federation systems, and the analysis of these results has allowed to uncover properties of these systems that would normally be hidden with the original testbeds.
Resumo:
This paper presents solutions of the NURISP VVER lattice benchmark using APOLLO2, TRIPOLI4 and COBAYA3 pin-by-pin. The main objective is to validate MOC based calculation schemes for pin-by-pin cross-section generation with APOLLO2 against TRIPOLI4 reference results. A specific objective is to test the APOLLO2 generated cross-sections and interface discontinuity factors in COBAYA3 pin-by-pin calculations with unstructured mesh. The VVER-1000 core consists of large hexagonal assemblies with 2mm inter-assembly water gaps which require the use of unstructured meshes in the pin-by-pin core simulators. The considered 2D benchmark problems include 19-pin clusters, fuel assemblies and 7-assembly clusters. APOLLO2 calculation schemes with the step characteristic method (MOC) and the higher-order Linear Surface MOC have been tested. The comparison of APOLLO2 vs.TRIPOLI4 results shows a very close agreement. The 3D lattice solver in COBAYA3 uses transport corrected multi-group diffusion approximation with interface discontinuity factors of GET or Black Box Homogenization type. The COBAYA3 pin-by-pin results in 2, 4 and 8 energy groups are close to the reference solutions when using side-dependent interface discontinuity factors.
Resumo:
Two complementary benchmarks have been proposed so far for the evaluation and continuous improvement of RDF stream processors: SRBench and LSBench. They put a special focus on different features of the evaluated systems, including coverage of the streaming extensions of SPARQL supported by each processor, query processing throughput, and an early analysis of query evaluation correctness, based on comparing the results obtained by different processors for a set of queries. However, none of them has analysed the operational semantics of these processors in order to assess the correctness of query evaluation results. In this paper, we propose a characterization of the operational semantics of RDF stream processors, adapting well-known models used in the stream processing engine community: CQL and SECRET. Through this formalization, we address correctness in RDF stream processor benchmarks, allowing to determine the multiple answers that systems should provide. Finally, we present CSRBench, an extension of SRBench to address query result correctness verification using an automatic method.
Resumo:
Query rewriting is one of the fundamental steps in ontologybased data access (OBDA) approaches. It takes as inputs an ontology and a query written according to that ontology, and produces as an output a set of queries that should be evaluated to account for the inferences that should be considered for that query and ontology. Different query rewriting systems give support to different ontology languages with varying expressiveness, and the rewritten queries obtained as an output do also vary in expressiveness. This heterogeneity has traditionally made it difficult to compare different approaches, and the area lacks in general commonly agreed benchmarks that could be used not only for such comparisons but also for improving OBDA support. In this paper we compile data, dimensions and measurements that have been used to evaluate some of the most recent systems, we analyse and characterise these assets, and provide a unified set of them that could be used as a starting point towards a more systematic benchmarking process for such systems. Finally, we apply this initial benchmark with some of the most relevant OBDA approaches in the state of the art.
Resumo:
The new reactor concepts proposed in the Generation IV International Forum (GIF) are conceived to improve the use of natural resources, reduce the amount of high-level radioactive waste and excel in their reliability and safe operation. Among these novel designs sodium fast reactors (SFRs) stand out due to their technological feasibility as demonstrated in several countries during the last decades. As part of the contribution of EURATOM to GIF the CP-ESFR is a collaborative project with the objective, among others, to perform extensive analysis on safety issues involving renewed SFR demonstrator designs. The verification of computational tools able to simulate the plant behaviour under postulated accidental conditions by code-to-code comparison was identified as a key point to ensure reactor safety. In this line, several organizations employed coupled neutronic and thermal-hydraulic system codes able to simulate complex and specific phenomena involving multi-physics studies adapted to this particular fast reactor technology. In the “Introduction” of this paper the framework of this study is discussed, the second section describes the envisaged plant design and the commonly agreed upon modelling guidelines. The third section presents a comparative analysis of the calculations performed by each organisation applying their models and codes to a common agreed transient with the objective to harmonize the models as well as validating the implementation of all relevant physical phenomena in the different system codes.
Resumo:
Query rewriting is one of the fundamental steps in ontologybased data access (OBDA) approaches. It takes as inputs an ontology and a query written according to that ontology, and produces as an output a set of queries that should be evaluated to account for the inferences that should be considered for that query and ontology. Different query rewriting systems give support to different ontology languages with varying expressiveness, and the rewritten queries obtained as an output do also vary in expressiveness. This heterogeneity has traditionally made it difficult to compare different approaches, and the area lacks in general commonly agreed benchmarks that could be used not only for such comparisons but also for improving OBDA support. In this paper we compile data, dimensions and measurements that have been used to evaluate some of the most recent systems, we analyse and characterise these assets, and provide a unified set of them that could be used as a starting point towards a more systematic benchmarking process for such systems. Finally, we apply this initial benchmark with some of the most relevant OBDA approaches in the state of the art.
Resumo:
La presente Tesis Doctoral aborda la aplicación de métodos meshless, o métodos sin malla, a problemas de autovalores, fundamentalmente vibraciones libres y pandeo. En particular, el estudio se centra en aspectos tales como los procedimientos para la resolución numérica del problema de autovalores con estos métodos, el coste computacional y la viabilidad de la utilización de matrices de masa o matrices de rigidez geométrica no consistentes. Además, se acomete en detalle el análisis del error, con el objetivo de determinar sus principales fuentes y obtener claves que permitan la aceleración de la convergencia. Aunque en la actualidad existe una amplia variedad de métodos meshless en apariencia independientes entre sí, se han analizado las diferentes relaciones entre ellos, deduciéndose que el método Element-Free Galerkin Method [Método Galerkin Sin Elementos] (EFGM) es representativo de un amplio grupo de los mismos. Por ello se ha empleado como referencia en este análisis. Muchas de las fuentes de error de un método sin malla provienen de su algoritmo de interpolación o aproximación. En el caso del EFGM ese algoritmo es conocido como Moving Least Squares [Mínimos Cuadrados Móviles] (MLS), caso particular del Generalized Moving Least Squares [Mínimos Cuadrados Móviles Generalizados] (GMLS). La formulación de estos algoritmos indica que la precisión de los mismos se basa en los siguientes factores: orden de la base polinómica p(x), características de la función de peso w(x) y forma y tamaño del soporte de definición de esa función. Se ha analizado la contribución individual de cada factor mediante su reducción a un único parámetro cuantificable, así como las interacciones entre ellos tanto en distribuciones regulares de nodos como en irregulares. El estudio se extiende a una serie de problemas estructurales uni y bidimensionales de referencia, y tiene en cuenta el error no sólo en el cálculo de autovalores (frecuencias propias o carga de pandeo, según el caso), sino también en términos de autovectores. This Doctoral Thesis deals with the application of meshless methods to eigenvalue problems, particularly free vibrations and buckling. The analysis is focused on aspects such as the numerical solving of the problem, computational cost and the feasibility of the use of non-consistent mass or geometric stiffness matrices. Furthermore, the analysis of the error is also considered, with the aim of identifying its main sources and obtaining the key factors that enable a faster convergence of a given problem. Although currently a wide variety of apparently independent meshless methods can be found in the literature, the relationships among them have been analyzed. The outcome of this assessment is that all those methods can be grouped in only a limited amount of categories, and that the Element-Free Galerkin Method (EFGM) is representative of the most important one. Therefore, the EFGM has been selected as a reference for the numerical analyses. Many of the error sources of a meshless method are contributed by its interpolation/approximation algorithm. In the EFGM, such algorithm is known as Moving Least Squares (MLS), a particular case of the Generalized Moving Least Squares (GMLS). The accuracy of the MLS is based on the following factors: order of the polynomial basis p(x), features of the weight function w(x), and shape and size of the support domain of this weight function. The individual contribution of each of these factors, along with the interactions among them, has been studied in both regular and irregular arrangement of nodes, by means of a reduction of each contribution to a one single quantifiable parameter. This assessment is applied to a range of both one- and two-dimensional benchmarking cases, and includes not only the error in terms of eigenvalues (natural frequencies or buckling load), but also of eigenvectors
Resumo:
This thesis contributes to the analysis and design of printed reflectarray antennas. The main part of the work is focused on the analysis of dual offset antennas comprising two reflectarray surfaces, one of them acts as sub-reflector and the second one acts as mainreflector. These configurations introduce additional complexity in several aspects respect to conventional dual offset reflectors, however they present a lot of degrees of freedom that can be used to improve the electrical performance of the antenna. The thesis is organized in four parts: the development of an analysis technique for dualreflectarray antennas, a preliminary validation of such methodology using equivalent reflector systems as reference antennas, a more rigorous validation of the software tool by manufacturing and testing a dual-reflectarray antenna demonstrator and the practical design of dual-reflectarray systems for some applications that show the potential of these kind of configurations to scan the beam and to generate contoured beams. In the first part, a general tool has been implemented to analyze high gain antennas which are constructed of two flat reflectarray structures. The classic reflectarray analysis based on MoM under local periodicity assumption is used for both sub and main reflectarrays, taking into account the incident angle on each reflectarray element. The incident field on the main reflectarray is computed taking into account the field radiated by all the elements on the sub-reflectarray.. Two approaches have been developed, one which employs a simple approximation to reduce the computer run time, and the other which does not, but offers in many cases, improved accuracy. The approximation is based on computing the reflected field on each element on the main reflectarray only once for all the fields radiated by the sub-reflectarray elements, assuming that the response will be the same because the only difference is a small variation on the angle of incidence. This approximation is very accurate when the reflectarray elements on the main reflectarray show a relatively small sensitivity to the angle of incidence. An extension of the analysis technique has been implemented to study dual-reflectarray antennas comprising a main reflectarray printed on a parabolic surface, or in general in a curved surface. In many applications of dual-reflectarray configurations, the reflectarray elements are in the near field of the feed-horn. To consider the near field radiated by the horn, the incident field on each reflectarray element is computed using a spherical mode expansion. In this region, the angles of incidence are moderately wide, and they are considered in the analysis of the reflectarray to better calculate the actual incident field on the sub-reflectarray elements. This technique increases the accuracy for the prediction of co- and cross-polar patterns and antenna gain respect to the case of using ideal feed models. In the second part, as a preliminary validation, the proposed analysis method has been used to design a dual-reflectarray antenna that emulates previous dual-reflector antennas in Ku and W-bands including a reflectarray as subreflector. The results for the dualreflectarray antenna compare very well with those of the parabolic reflector and reflectarray subreflector; radiation patterns, antenna gain and efficiency are practically the same when the main parabolic reflector is substituted by a flat reflectarray. The results show that the gain is only reduced by a few tenths of a dB as a result of the ohmic losses in the reflectarray. The phase adjustment on two surfaces provided by the dual-reflectarray configuration can be used to improve the antenna performance in some applications requiring multiple beams, beam scanning or shaped beams. Third, a very challenging dual-reflectarray antenna demonstrator has been designed, manufactured and tested for a more rigorous validation of the analysis technique presented. The proposed antenna configuration has the feed, the sub-reflectarray and the main-reflectarray in the near field one to each other, so that the conventional far field approximations are not suitable for the analysis of such antenna. This geometry is used as benchmarking for the proposed analysis tool in very stringent conditions. Some aspects of the proposed analysis technique that allow improving the accuracy of the analysis are also discussed. These improvements include a novel method to reduce the inherent cross polarization which is introduced mainly from grounded patch arrays. It has been checked that cross polarization in offset reflectarrays can be significantly reduced by properly adjusting the patch dimensions in the reflectarray in order to produce an overall cancellation of the cross-polarization. The dimensions of the patches are adjusted in order not only to provide the required phase-distribution to shape the beam, but also to exploit the crosses by zero of the cross-polarization components. The last part of the thesis deals with direct applications of the technique described. The technique presented is directly applicable to the design of contoured beam antennas for DBS applications, where the requirements of cross-polarisation are very stringent. The beam shaping is achieved by synthesithing the phase distribution on the main reflectarray while the sub-reflectarray emulates an equivalent hyperbolic subreflector. Dual-reflectarray antennas present also the ability to scan the beam over small angles about boresight. Two possible architectures for a Ku-band antenna are also described based on a dual planar reflectarray configuration that provides electronic beam scanning in a limited angular range. In the first architecture, the beam scanning is achieved by introducing a phase-control in the elements of the sub-reflectarray and the mainreflectarray is passive. A second alternative is also studied, in which the beam scanning is produced using 1-bit control on the main reflectarray, while a passive subreflectarray is designed to provide a large focal distance within a compact configuration. The system aims to develop a solution for bi-directional satellite links for emergency communications. In both proposed architectures, the objective is to provide a compact optics and simplicity to be folded and deployed.
Resumo:
Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these effects by means of statistical models. To this end, a benchmarking between two different families of varying-coefficient models (regime-switching and conditional parametric models) is carried out. The case of the offshore wind farm of Horns Rev in Denmark has been considered. The analysis is focused on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different underlying effects in the dynamics of wind power time series.
Resumo:
This paper shows the results of a research aimed to formulate a general model for supporting the implementation and management of an urban road pricing scheme. After a preliminary work, to define the state of the art in the field of sustainable urban mobility strategies, the problem has been theoretically set up in terms of transport economy, introducing the external costs’ concept duly translated into the principle of pricing for the use of public infrastructures. The research is based on the definition of a set of direct and indirect indicators to qualify the urban areas by land use, mobility, environmental and economic conditions. These indicators have been calculated for a selected set of typical urban areas in Europe on the basis of the results of a survey carried out by means of a specific questionnaire. Once identified the most typical and interesting applications of the road pricing concept in cities such as London (Congestion Charging), Milan (Ecopass), Stockholm (Congestion Tax) and Rome (ZTL), a large benchmarking exercise and the cross analysis of direct and indirect indicators, has allowed to define a simple general model, guidelines and key requirements for the implementation of a pricing scheme based traffic restriction in a generic urban area. The model has been finally applied to the design of a road pricing scheme for a particular area in Madrid, and to the quantification of the expected results of its implementation from a land use, mobility, environmental and economic perspective.
Resumo:
In the last recent years, with the popularity of image compression techniques, many architectures have been proposed. Those have been generally based on the Forward and Inverse Discrete Cosine Transform (FDCT, IDCT). Alternatively, compression schemes based on discrete "wavelets" transform (DWT), used, both, in JPEG2000 coding standard and in H264-SVC (Scalable Video Coding) standard, do not need to divide the image into non-overlapping blocks or macroblocks. This paper discusses the DLMT (Discrete Lopez-Moreno Transform) hardware implementation. It proposes a new scheme intermediate between the DCT and the DWT, comparing results of the most relevant proposed architectures for benchmarking. The DLMT can also be applied over a whole image, but this does not involve increasing computational complexity. FPGA implementation results show that the proposed DLMT has significant performance benefits and improvements comparing with the DCT and the DWT and consequently it is very suitable for implementation on WSN (Wireless Sensor Network) applications.
Resumo:
El diseño y desarrollo de sistemas de suspensión para vehículos se basa cada día más en el diseño por ordenador y en herramientas de análisis por ordenador, las cuales permiten anticipar problemas y resolverlos por adelantado. El comportamiento y las características dinámicas se calculan con precisión, bajo coste, y recursos y tiempos de cálculo reducidos. Sin embargo, existe una componente iterativa en el proceso, que requiere la definición manual de diseños a través de técnicas “prueba y error”. Esta Tesis da un paso hacia el desarrollo de un entorno de simulación eficiente capaz de simular, analizar y evaluar diseños de suspensiones vehiculares, y de mejorarlos hacia la solución optima mediante la modificación de los parámetros de diseño. La modelización mediante sistemas multicuerpo se utiliza aquí para desarrollar un modelo de autocar con 18 grados de libertad, de manera detallada y eficiente. La geometría y demás características de la suspensión se ajustan a las del vehículo real, así como los demás parámetros del modelo. Para simular la dinámica vehicular, se utiliza una formulación multicuerpo moderna y eficiente basada en las ecuaciones de Maggi, a la que se ha incorporado un visor 3D. Así, se consigue simular maniobras vehiculares en tiempos inferiores al tiempo real. Una vez que la dinámica está disponible, los análisis de sensibilidad son cruciales para una optimización robusta y eficiente. Para ello, se presenta una técnica matemática que permite derivar las variables dinámicas dentro de la formulación, de forma algorítmica, general, con la precisión de la maquina, y razonablemente eficiente: la diferenciación automática. Este método propaga las derivadas con respecto a las variables de diseño a través del código informático y con poca intervención del usuario. En contraste con otros enfoques en la bibliografía, generalmente particulares y limitados, se realiza una comparación de librerías, se desarrolla una formulación híbrida directa-automática para el cálculo de sensibilidades, y se presentan varios ejemplos reales. Finalmente, se lleva a cabo la optimización de la respuesta dinámica del vehículo citado. Se analizan cuatro tipos distintos de optimización: identificación de parámetros, optimización de la maniobrabilidad, optimización del confort y optimización multi-objetivo, todos ellos aplicados al diseño del autocar. Además de resultados analíticos y gráficos, se incluyen algunas consideraciones acerca de la eficiencia. En resumen, se mejora el comportamiento dinámico de vehículos por medio de modelos multicuerpo y de técnicas de diferenciación automática y optimización avanzadas, posibilitando un ajuste automático, preciso y eficiente de los parámetros de diseño. ABSTRACT Each day, the design and development of vehicle suspension systems relies more on computer-aided design and computer-aided engineering tools, which allow anticipating the problems and solving them ahead of time. Dynamic behavior and characteristics are thus simulated accurately and inexpensively with moderate computational times and resources. There is, however, an iterative component in the process, which involves the manual definition of designs in a trialand-error manner. This Thesis takes a step towards the development of an efficient simulation framework capable of simulating, analyzing and evaluating vehicle suspension designs, and automatically improving them by varying the design parameters towards the optimal solution. The multibody systems approach is hereby used to model a three-dimensional 18-degrees-of-freedom coach in a comprehensive yet efficient way. The suspension geometry and characteristics resemble the ones from the real vehicle, as do the rest of vehicle parameters. In order to simulate vehicle dynamics, an efficient, state-of-the-art multibody formulation based on Maggi’s equations is employed, and a three-dimensional graphics viewer is developed. As a result, vehicle maneuvers can be simulated faster than real-time. Once the dynamics are ready, a sensitivity analysis is crucial for a robust optimization. To that end, a mathematical technique is introduced, which allows differentiating the dynamic variables within the multibody formulation in a general, algorithmic, accurate to machine precision, and reasonably efficient way: automatic differentiation. This method propagates the derivatives with respect to the design parameters throughout the computer code, with little user interaction. In contrast with other attempts in the literature, mostly not generalpurpose, a benchmarking of libraries is carried out, a hybrid direct-automatic differentiation approach for the computation of sensitivities is developed, and several real-life examples are analyzed. Finally, a design optimization process of the aforementioned vehicle is carried out. Four different types of dynamic response optimization are presented: parameter identification, handling optimization, ride comfort optimization and multi-objective optimization; all of which are applied to the design of the coach example. Together with analytical and visual proof of the results, efficiency considerations are made. In summary, the dynamic behavior of vehicles is improved by using the multibody systems approach, along with advanced differentiation and optimization techniques, enabling an automatic, accurate and efficient tuning of design parameters.