26 resultados para BASES DE DATOS RELACIONALES
em Universidad Politécnica de Madrid
Resumo:
Desde 1995, el derecho internacional se ha integrado en el ordenamiento jurídico español en lo referente a seguridad y salud. Sin embargo, la situación de la seguridad en los aprovechamientos forestales no ha mejorado notablemente, puesto que se detectan frecuentes casos de personal trabajando sin equipo de protección e incumpliendo las instrucciones de trabajo seguro, y son abundantes las referencias a una elevada accidentalidad. Para evaluar estos aspectos, primeramente se han comparado y valorado los datos de accidentalidad de los taladores de una empresa de referencia con los de los sectores agrario y de la construcción a través de las estadísticas nacionales y con los datos depurados del sector forestal a partir de la base de datos de declaración electrónica de accidentes de la C.A. de Castilla y León. En segundo lugar, se han identificado las deficiencias en materia de prevención, diseñando para ello una encuesta que se ha llevado a cabo en 35 aprovechamientos de Castilla y León. Posteriormente, se ha verificado que la reducción de la accidentalidad en la empresa de referencia se debe a la aplicación del plan de prevención. Se han caracterizado los riesgos en los que habían incurrido los taladores y se han descrito las medidas adoptadas para la reducción de los accidentes en la empresa estudiada, lo que ha conducido a una serie de recomendaciones para reducir la accidentalidad. Por otro lado se han analizado las causas de los picos de accidentalidad detectados. Como conclusión, se puede reducir sensiblemente la accidentalidad sólo si la empresa integra la política de prevención como un objetivo más de la gestión empresarial, en todos los niveles de su organización, acompañando las herramientas técnicas con formación temprana y motivación adecuada. Palabras clave: aprovechamientos forestales, riesgos laborales, prevención, trabajador forestal, accidentalidad, incidencia, gravedad. From 1995, Spanish safety legislation has been adapted to the Internationa! framework. However, operationally the situation is not so good, at least in the wood harvesting activity. Some forest workers are still found not wearing the compulsory safety equipment, working without respecting safety rules and references to high accidents rates are frequent. To assess those aspects, firstly some comparisons have been made between the accident records in a reference company and the accident indexes at national and regional level for building and farming activities. Secondly, using a purpose-designed questionnaire applied to 35 logging worksites in Castilla y Leon Region, deficiencies in prevention have been identified. The relation between the accident reduction and the prevention methods used by the reference studied company has been confirmed. Also the main causes and peaks of the accidents have been analyzed. Finally, some recommendations to reduce the risk of accidents in harvesting operations are provided. The main conclusion confirms that the possibility of reducing the accident risk is conditioned to the commitment of all the staff of the timber harvesting company, at every level of responsibility, to search for excellence in safety as one more entrepreneurial goal. This fact should be accompanied by the staff early training and the adequate motivation means. Keywords: logging, labor risk, safety and health, prevention, logging workers, accident incidence, accident severity.
Resumo:
Los objetivos de este proyecto son la reinterpretación de los sondeos de resonancia magnética (SRM) realizados por el IGME en los acuíferos de Doñana y Estaña empleando el nuevo software de inversión SAMOVAR 11 y la realización de un inventario en formato de ficha de estos SRM. Se busca determinar si las nuevas características del software permiten mejorar el comportamiento de las inversiones de datos de SRM. Para llevar a cabo el reprocesamiento se usaron las distintas inversiones posibles de SAMOVAR 11 y se comparó cada caso con la inversión realizada con la versión anterior del software de inversión, SAMOVAR 6. Se determinó la existencia de coherencia en las inversiones complejas de amplitud y fase realizadas con SAMOVAR 11 proponiendo la realización de un estudio en campo para conocer con más exactitud las características de SAMOVAR 11. Por último las fichas de los SRM se realizaron teniendo en cuenta los principales parámetros de un SRM concluyendo en la utilidad que tendría una relación de todos los SRM realizados por el IGME siguiendo el formato aquí presentado u otro distinto.
Resumo:
El presente trabajo desarrolla un servicio REST que transforma frases en lenguaje natural a grafos RDF. Los grafos generados son grafos dirigidos, donde los nodos se forman con los sustantivos o adjetivos de las frases, y los arcos se forman con los verbos. Se utiliza dentro del proyecto p-medicine para dar soporte a las siguientes funcionalidades: Búsquedas en lenguaje natural: actualmente la plataforma p-medicine proporciona un interfaz programático para realizar consultas en SPARQL. El servicio desarrollado permitiría generar esas consultas automáticamente a partir de frases en lenguaje natural. Anotaciones de bases de datos mediante lenguaje natural: la plataforma pmedicine incorpora una herramienta, desarrollada por el Grupo de Ingeniería Biomédica de la Universidad Politécnica de Madrid, para la anotación de bases de datos RDF. Estas anotaciones son necesarias para la posterior traducción de las bases de datos a un esquema central. El proceso de anotación requiere que el usuario construya de forma manual las vistas RDF que desea anotar, lo que requiere mostrar gráficamente el esquema RDF y que el usuario construya vistas RDF seleccionando las clases y relaciones necesarias. Este proceso es a menudo complejo y demasiado difícil para un usuario sin perfil técnico. El sistema se incorporará para permitir que la construcción de estas vistas se realice con lenguaje natural. ---ABSTRACT---The present work develops a REST service that transforms natural language sentences to RDF degrees. Generated graphs are directed graphs where nodes are formed with nouns or adjectives of phrases, and the arcs are formed with verbs. Used within the p-medicine project to support the following functionality: Natural language queries: currently the p-medicine platform provides a programmatic interface to query SPARQL. The developed service would automatically generate those queries from natural language sentences. Memos databases using natural language: the p-medicine platform incorporates a tool, developed by the Group of Biomedical Engineering at the Polytechnic University of Madrid, for the annotation of RDF data bases. Such annotations are necessary for the subsequent translation of databases to a central scheme. The annotation process requires the user to manually construct the RDF views that he wants annotate, requiring graphically display the RDF schema and the user to build RDF views by selecting classes and relationships. This process is often complex and too difficult for a user with no technical background. The system is incorporated to allow the construction of these views to be performed with natural language.
Resumo:
El trabajo se enmarca dentro de los proyecto INTEGRATE y EURECA, cuyo objetivo es el desarrollo de una capa de interoperabilidad semántica que permita la integración de datos e investigación clínica, proporcionando una plataforma común que pueda ser integrada en diferentes instituciones clínicas y que facilite el intercambio de información entre las mismas. De esta manera se promueve la mejora de la práctica clínica a través de la cooperación entre instituciones de investigación con objetivos comunes. En los proyectos se hace uso de estándares y vocabularios clínicos ya existentes, como pueden ser HL7 o SNOMED, adaptándolos a las necesidades particulares de los datos con los que se trabaja en INTEGRATE y EURECA. Los datos clínicos se representan de manera que cada concepto utilizado sea único, evitando ambigüedades y apoyando la idea de plataforma común. El alumno ha formado parte de un equipo de trabajo perteneciente al Grupo de Informática de la UPM, que a su vez trabaja como uno de los socios de los proyectos europeos nombrados anteriormente. La herramienta desarrollada, tiene como objetivo realizar tareas de homogenización de la información almacenada en las bases de datos de los proyectos haciendo uso de los mecanismos de normalización proporcionados por el vocabulario médico SNOMED-CT. Las bases de datos normalizadas serán las utilizadas para llevar a cabo consultas por medio de servicios proporcionados en la capa de interoperabilidad, ya que contendrán información más precisa y completa que las bases de datos sin normalizar. El trabajo ha sido realizado entre el día 12 de Septiembre del año 2014, donde comienza la etapa de formación y recopilación de información, y el día 5 de Enero del año 2015, en el cuál se termina la redacción de la memoria. El ciclo de vida utilizado ha sido el de desarrollo en cascada, en el que las tareas no comienzan hasta que la etapa inmediatamente anterior haya sido finalizada y validada. Sin embargo, no todas las tareas han seguido este modelo, ya que la realización de la memoria del trabajo se ha llevado a cabo de manera paralela con el resto de tareas. El número total de horas dedicadas al Trabajo de Fin de Grado es 324. Las tareas realizadas y el tiempo de dedicación de cada una de ellas se detallan a continuación: Formación. Etapa de recopilación de información necesaria para implementar la herramienta y estudio de la misma [30 horas. Especificación de requisitos. Se documentan los diferentes requisitos que ha de cumplir la herramienta [20 horas]. Diseño. En esta etapa se toman las decisiones de diseño de la herramienta [35 horas]. Implementación. Desarrollo del código de la herramienta [80 horas]. Pruebas. Etapa de validación de la herramienta, tanto de manera independiente como integrada en los proyectos INTEGRATE y EURECA [70 horas]. Depuración. Corrección de errores e introducción de mejoras de la herramienta [45 horas]. Realización de la memoria. Redacción de la memoria final del trabajo [44 horas].---ABSTRACT---This project belongs to the semantic interoperability layer developed in the European projects INTEGRATE and EURECA, which aims to provide a platform to promote interchange of medical information from clinical trials to clinical institutions. Thus, research institutions may cooperate to enhance clinical practice. Different health standards and clinical terminologies has been used in both INTEGRATE and EURECA projects, e.g. HL7 or SNOMED-CT. These tools have been adapted to the projects data requirements. Clinical data are represented by unique concepts, avoiding ambiguity problems. The student has been working in the Biomedical Informatics Group from UPM, partner of the INTEGRATE and EURECA projects. The tool developed aims to perform homogenization tasks over information stored in databases of the project, through normalized representation provided by the SNOMED-CT terminology. The data query is executed against the normalized version of the databases, since the information retrieved will be more informative than non-normalized databases. The project has been performed from September 12th of 2014, when initiation stage began, to January 5th of 2015, when the final report was finished. The waterfall model for software development was followed during the working process. Therefore, a phase may not start before the previous one finishes and has been validated, except from the final report redaction, which has been carried out in parallel with the others phases. The tasks that have been developed and time for each one are detailed as follows: Training. Gathering the necessary information to develop the tool [30 hours]. Software requirement specification. Requirements the tool must accomplish [20 hours]. Design. Decisions on the design of the tool [35 hours]. Implementation. Tool development [80 hours]. Testing. Tool evaluation within the framework of the INTEGRATE and EURECA projects [70 hours]. Debugging. Improve efficiency and correct errors [45 hours]. Documenting. Final report elaboration [44 hours].
Resumo:
Through the years, we have detected a problem in the academic program of Information and Communication Technologies of our University, a recurrent problem in the teaching learning process, accentuated with the associated paradigm to the construction of knowledge by the own pupil. We are specifically referring to the search and assimilation of content inside the book texts about Digital Databases. The work exposed in this paper represents an effort for contributing in the reduction of educational slump in areas related to good design and construction of data banks. The textbook of this research, treats all the thematical content in this area, which are studied in the whole academic program. These and another relevant subjects in the database area are retaken from a simple but fundamentally practical theorical focus, allowing the studying on acquiring a significative learning in an easier and single source way. As a result, we present the almost definitive version of the book which is been tested on pilot groups
Resumo:
El presente trabajo propone un procedimiento a través del cual un razonador evalúa la información de una base de datos y la clasifica de forma automática en conceptos, relaciones, roles y atributos. Esta clasificación se desarrolla mediante un procedimiento dividido en dos métodos: primero, un Algoritmo de migración el cual genera una ontología con los elementos del esquema relacional de la base de datos. El segundo método es la Estrategia de clasificación de la información, esta consiste en una serie de consultas SPARQL mediante las que se clasifica la información de la base de datos.---ABSTRACT---This paper proposes a method by which a reasoner evaluates information from a database and automatically classifies in concepts, relationships, roles and attributes. This classification is developed through a procedure divided into two methods: first, a migration algorithm which generates an ontology with elements of relational schema database. The second method is the strategy classification of information, this is a series of SPARQL queries through that classified using the information the database.
Resumo:
El mundo de la web admite actualmente los productos desarrollados tanto por desarrolladores profesionales como por usuarios finales con un conocimiento más limitado. A pesar de la diferencia que se puede suponer de calidad entre los productos de ambos, las dos soluciones pueden ser reconocidas y empleadas en una aplicación. En la Web 2.0, este comportamiento se observa en el desarrollo de componentes web. Lo que se persigue en el trabajo es desarrollar un modelo de persistencia que, apoyado por un lado servidor y por uno cliente, recoja las métricas de calidad de los componentes cuando los usuarios interaccionan con ellos. A partir de estas métricas, es posible mejorar la calidad de estos componentes. La forma en la que se van a recoger las métricas es a través de PicBit, la aplicación desarrollada para que los usuarios puedan interconectar diferentes componentes entre ellos sin restricciones, de forma que tras interactuar con ellos puedan expresar su grado de satisfacción, que se recoge para la evaluación de la calidad. Se definen también unas métricas intrínsecas al componente, no determinadas por el usuario y que sirven como referencia de la evaluación. Cuando se tienen tanto las métricas intrínsecas como procedentes del usuario, se realiza una correlación entre ellas que permite analizar las posibles desviaciones entre ellas y determinar la calidad propia del componente. Las conclusiones que se pueden obtener del trabajo es que cuando los usuarios pueden realizar pruebas de usabilidad de forma libre, sin restricciones, es mayor la posibilidad de obtener resultados favorables porque estos resultados muestran cómo usará un usuario final la aplicación. Este método de trabajo se ve favorecido por el número de herramientas que se pueden utilizar hoy para monitorizar el flujo de usuario en el servicio.---ABSTRACT---Nowadays, the web world deals with products developed both by professional developers and by end-users with some limited knowledge. Although the difference between both can be important in quality terms, both are accepted and included in web applications. In web 2.0, this behavior can be recognized in the web components development. The goal pursued in the work presented is to create a persistent model that, supported by an end and a back side, will pick the quality measures of the components when the users interact with them. These measures are the starting point for improving the components. The way in which the measures are going to be picked is through PicBit, the application we have developed in order to allow the users playing with the components without restrictions or rules, so after the interaction they can give their satisfaction mark with the application. This will be the value used to evaluate the quality. Some own measures are also defined, which does not depend on the user and which will be used as a reference point of the evaluation. When the measures from users and own ones are got, their correlation is analyzed to study the differences between them and to establish the quality of the component. The conclusion that can be gained from the project is the importance of giving freedom for users when doing usability tests because it increases the chance to get positive results, in the way the users execute the operations they want with the application. This method is fortunate for having such a number of tools to monitor the user flow when using the service.
Resumo:
El presente trabajo se ha centrado en la investigación de soluciones para automatizar la tarea del enriquecimiento de fuentes de datos sobre redes de sensores con descripciones lingüísticas, con el fin de facilitar la posterior generación de textos en lenguaje natural. El uso de descripciones en lenguaje natural facilita el acceso a los datos a una mayor diversidad de usuarios y, como consecuencia, permite aprovechar mejor las inversiones en redes de sensores. En el trabajo se ha considerado el uso de bases de datos abiertas para abordar la necesidad de disponer de un gran volumen y diversidad de conocimiento geográfico. Se ha analizado también el enriquecimiento de datos dentro de enfoques metodológicos de curación de datos y métodos de generación de lenguaje natural. Como resultado del trabajo, se ha planteado un método general basado en una estrategia de generación y prueba que incluye una forma de representación y uso del conocimiento heurístico con varias etapas de razonamiento para la construcción de descripciones lingüísticas de enriquecimiento de datos. En la evaluación de la propuesta general se han manejado tres escenarios, dos de ellos para generación de referencias geográficas sobre redes de sensores complejas de dimensión real y otro para la generación de referencias temporales. Los resultados de la evaluación han mostrado la validez práctica de la propuesta general exhibiendo mejoras de rendimiento respecto a otros enfoques. Además, el análisis de los resultados ha permitido identificar y cuantificar el impacto previsible de diversas líneas de mejora en bases de datos abiertas. ABSTRACT This work has focused on the search for solutions to automate the task of enrichment sensor-network-based data sources with textual descriptions, so as to facilitate the generation of natural language texts. Using natural language descriptions facilitates data access to a wider range of users and, therefore, allows better leveraging investments in sensor networks. In this work we have considered the use of open databases to address the need for a large volume and diversity of geographical knowledge. We have also analyzed data enrichment in methodological approaches and data curation methods of natural language generation. As a result, it has raised a general method based on a strategy of generating and testing that includes a representation using heuristic knowledge with several stages of reasoning for the construction of linguistic descriptions of data enrichment. In assessing the overall proposal three scenarios have been addressed, two of them in the environmental domain with complex sensor networks and another real dimension in the time domain. The evaluation results have shown the validity and practicality of our proposal, showing performance improvements over other approaches. Furthermore, the analysis of the results has allowed identifying and quantifying the expected impact of various lines of improvement in open databases.
Resumo:
El trabajo ha sido realizado dentro del marco de los proyectos EURECA (Enabling information re-Use by linking clinical REsearch and Care) e INTEGRATE (Integrative Cancer Research Through Innovative Biomedical Infrastructures), en los que colabora el Grupo de Informática Biomédica de la UPM junto a otras universidades e instituciones sanitarias europeas. En ambos proyectos se desarrollan servicios e infraestructuras con el objetivo principal de almacenar información clínica, procedente de fuentes diversas (como por ejemplo de historiales clínicos electrónicos de hospitales, de ensayos clínicos o artículos de investigación biomédica), de una forma común y fácilmente accesible y consultable para facilitar al máximo la investigación de estos ámbitos, de manera colaborativa entre instituciones. Esta es la idea principal de la interoperabilidad semántica en la que se concentran ambos proyectos, siendo clave para el correcto funcionamiento del software del que se componen. El intercambio de datos con un modelo de representación compartido, común y sin ambigüedades, en el que cada concepto, término o dato clínico tendrá una única forma de representación. Lo cual permite la inferencia de conocimiento, y encaja perfectamente en el contexto de la investigación médica. En concreto, la herramienta a desarrollar en este trabajo también está orientada a la idea de maximizar la interoperabilidad semántica, pues se ocupa de la carga de información clínica con un formato estandarizado en un modelo común de almacenamiento de datos, implementado en bases de datos relacionales. El trabajo ha sido desarrollado en el periodo comprendido entre el 3 de Febrero y el 6 de Junio de 2014. Se ha seguido un ciclo de vida en cascada para la organización del trabajo realizado en las tareas de las que se compone el proyecto, de modo que una fase no puede iniciarse sin que se haya terminado, revisado y aceptado la fase anterior. Exceptuando la tarea de documentación del trabajo (para la elaboración de esta memoria), que se ha desarrollado paralelamente a todas las demás. ----ABSTRACT--- The project has been developed during the second semester of the 2013/2014 academic year. This Project has been done inside EURECA and INTEGRATE European biomedical research projects, where the GIB (Biomedical Informatics Group) of the UPM works as a partner. Both projects aim is to develop platforms and services with the main goal of storing clinical information (e.g. information from hospital electronic health records (EHRs), clinical trials or research articles) in a common way and easy to access and query, in order to support medical research. The whole software environment of these projects is based on the idea of semantic interoperability, which means the ability of computer systems to exchange data with unambiguous and shared meaning. This idea allows knowledge inference, which fits perfectly in medical research context. The tool to develop in this project is also "semantic operability-oriented". Its purpose is to store standardized clinical information in a common data model, implemented in relational databases. The project has been performed during the period between February 3rd and June 6th, of 2014. It has followed a "Waterfall model" of software development, in which progress is seen as flowing steadily downwards through its phases. Each phase starts when its previous phase has been completed and reviewed. The task of documenting the project‟s work is an exception; it has been performed in a parallel way to the rest of the tasks.
Resumo:
Desde el inicio de los tiempos el ser humano ha tenido la necesidad de comprender y analizar todo lo que nos rodea, para ello se ha valido de diferentes herramientas como las pinturas rupestres, la biblioteca de Alejandría, bastas colecciones de libros y actualmente una enorme cantidad de información informatizada. Todo esto siempre se ha almacenado, según la tecnología de la época lo permitía, con la esperanza de que fuera útil mediante su consulta y análisis. En la actualidad continúa ocurriendo lo mismo. Hasta hace unos años se ha realizado el análisis de información manualmente o mediante bases de datos relacionales. Ahora ha llegado el momento de una nueva tecnología, Big Data, con la cual se puede realizar el análisis de extensas cantidades de datos de todo tipo en tiempos relativamente pequeños. A lo largo de este libro, se estudiarán las características y ventajas de Big Data, además de realizar un estudio de la plataforma Hadoop. Esta es una plataforma basada en Java y puede realizar el análisis de grandes cantidades de datos de diferentes formatos y procedencias. Durante la lectura de estas páginas se irá dotando al lector de los conocimientos previos necesarios para su mejor comprensión, así como de ubicarle temporalmente en el desarrollo de este concepto, de su uso, las previsiones y la evolución y desarrollo que se prevé tenga en los próximos años. ABSTRACT. Since the beginning of time, human being was in need of understanding and analyzing everything around him. In order to do that, he used different media as cave paintings, Alexandria library, big amount of book collections and nowadays massive amount of computerized information. All this information was stored, depending on the age and technology capability, with the expectation of being useful though it consulting and analysis. Nowadays they keep doing the same. In the last years, they have been processing the information manually or using relational databases. Now it is time for a new technology, Big Data, which is able to analyze huge amount of data in a, relatively, small time. Along this book, characteristics and advantages of Big Data will be detailed, so as an introduction to Hadoop platform. This platform is based on Java and can perform the analysis of massive amount of data in different formats and coming from different sources. During this reading, the reader will be provided with the prior knowledge needed to it understanding, so as the temporal location, uses, forecast, evolution and growth in the next years.
Resumo:
RDB to RDF Mapping Language (R2RML) es una recomendación del W3C que permite especificar reglas para transformar bases de datos relacionales a RDF. Estos datos en RDF se pueden materializar y almacenar en un sistema gestor de tripletas RDF (normalmente conocidos con el nombre triple store), en el cual se pueden evaluar consultas SPARQL. Sin embargo, hay casos en los cuales la materialización no es adecuada o posible, por ejemplo, cuando la base de datos se actualiza frecuentemente. En estos casos, lo mejor es considerar los datos en RDF como datos virtuales, de tal manera que las consultas SPARQL anteriormente mencionadas se traduzcan a consultas SQL que se pueden evaluar sobre los sistemas gestores de bases de datos relacionales (SGBD) originales. Para esta traducción se tienen en cuenta los mapeos R2RML. La primera parte de esta tesis se centra en la traducción de consultas. Se propone una formalización de la traducción de SPARQL a SQL utilizando mapeos R2RML. Además se proponen varias técnicas de optimización para generar consultas SQL que son más eficientes cuando son evaluadas en sistemas gestores de bases de datos relacionales. Este enfoque se evalúa mediante un benchmark sintético y varios casos reales. Otra recomendación relacionada con R2RML es la conocida como Direct Mapping (DM), que establece reglas fijas para la transformación de datos relacionales a RDF. A pesar de que ambas recomendaciones se publicaron al mismo tiempo, en septiembre de 2012, todavía no se ha realizado un estudio formal sobre la relación entre ellas. Por tanto, la segunda parte de esta tesis se centra en el estudio de la relación entre R2RML y DM. Se divide este estudio en dos partes: de R2RML a DM, y de DM a R2RML. En el primer caso, se estudia un fragmento de R2RML que tiene la misma expresividad que DM. En el segundo caso, se representan las reglas de DM como mapeos R2RML, y también se añade la semántica implícita (relaciones de subclase, 1-N y M-N) que se puede encontrar codificada en la base de datos. Esta tesis muestra que es posible usar R2RML en casos reales, sin necesidad de realizar materializaciones de los datos, puesto que las consultas SQL generadas son suficientemente eficientes cuando son evaluadas en el sistema gestor de base de datos relacional. Asimismo, esta tesis profundiza en el entendimiento de la relación existente entre las dos recomendaciones del W3C, algo que no había sido estudiado con anterioridad. ABSTRACT. RDB to RDF Mapping Language (R2RML) is a W3C recommendation that allows specifying rules for transforming relational databases into RDF. This RDF data can be materialized and stored in a triple store, so that SPARQL queries can be evaluated by the triple store. However, there are several cases where materialization is not adequate or possible, for example, if the underlying relational database is updated frequently. In those cases, RDF data is better kept virtual, and hence SPARQL queries over it have to be translated into SQL queries to the underlying relational database system considering that the translation process has to take into account the specified R2RML mappings. The first part of this thesis focuses on query translation. We discuss the formalization of the translation from SPARQL to SQL queries that takes into account R2RML mappings. Furthermore, we propose several optimization techniques so that the translation procedure generates SQL queries that can be evaluated more efficiently over the underlying databases. We evaluate our approach using a synthetic benchmark and several real cases, and show positive results that we obtained. Direct Mapping (DM) is another W3C recommendation for the generation of RDF data from relational databases. While R2RML allows users to specify their own transformation rules, DM establishes fixed transformation rules. Although both recommendations were published at the same time, September 2012, there has not been any study regarding the relationship between them. The second part of this thesis focuses on the study of the relationship between R2RML and DM. We divide this study into two directions: from R2RML to DM, and from DM to R2RML. From R2RML to DM, we study a fragment of R2RML having the same expressive power than DM. From DM to R2RML, we represent DM transformation rules as R2RML mappings, and also add the implicit semantics encoded in databases, such as subclass, 1-N and N-N relationships. This thesis shows that by formalizing and optimizing R2RML-based SPARQL to SQL query translation, it is possible to use R2RML engines in real cases as the resulting SQL is efficient enough to be evaluated by the underlying relational databases. In addition to that, this thesis facilitates the understanding of bidirectional relationship between the two W3C recommendations, something that had not been studied before.
Resumo:
Los hipergrafos dirigidos se han empleado en problemas relacionados con lógica proposicional, bases de datos relacionales, linguística computacional y aprendizaje automático. Los hipergrafos dirigidos han sido también utilizados como alternativa a los grafos (bipartitos) dirigidos para facilitar el estudio de las interacciones entre componentes de sistemas complejos que no pueden ser fácilmente modelados usando exclusivamente relaciones binarias. En este contexto, este tipo de representación es conocida como hiper-redes. Un hipergrafo dirigido es una generalización de un grafo dirigido especialmente adecuado para la representación de relaciones de muchos a muchos. Mientras que una arista en un grafo dirigido define una relación entre dos de sus nodos, una hiperarista en un hipergrafo dirigido define una relación entre dos conjuntos de sus nodos. La conexión fuerte es una relación de equivalencia que divide el conjunto de nodos de un hipergrafo dirigido en particiones y cada partición define una clase de equivalencia conocida como componente fuertemente conexo. El estudio de los componentes fuertemente conexos de un hipergrafo dirigido puede ayudar a conseguir una mejor comprensión de la estructura de este tipo de hipergrafos cuando su tamaño es considerable. En el caso de grafo dirigidos, existen algoritmos muy eficientes para el cálculo de los componentes fuertemente conexos en grafos de gran tamaño. Gracias a estos algoritmos, se ha podido averiguar que la estructura de la WWW tiene forma de “pajarita”, donde más del 70% del los nodos están distribuidos en tres grandes conjuntos y uno de ellos es un componente fuertemente conexo. Este tipo de estructura ha sido también observada en redes complejas en otras áreas como la biología. Estudios de naturaleza similar no han podido ser realizados en hipergrafos dirigidos porque no existe algoritmos capaces de calcular los componentes fuertemente conexos de este tipo de hipergrafos. En esta tesis doctoral, hemos investigado como calcular los componentes fuertemente conexos de un hipergrafo dirigido. En concreto, hemos desarrollado dos algoritmos para este problema y hemos determinado que son correctos y cuál es su complejidad computacional. Ambos algoritmos han sido evaluados empíricamente para comparar sus tiempos de ejecución. Para la evaluación, hemos producido una selección de hipergrafos dirigidos generados de forma aleatoria inspirados en modelos muy conocidos de grafos aleatorios como Erdos-Renyi, Newman-Watts-Strogatz and Barabasi-Albert. Varias optimizaciones para ambos algoritmos han sido implementadas y analizadas en la tesis. En concreto, colapsar los componentes fuertemente conexos del grafo dirigido que se puede construir eliminando ciertas hiperaristas complejas del hipergrafo dirigido original, mejora notablemente los tiempos de ejecucion de los algoritmos para varios de los hipergrafos utilizados en la evaluación. Aparte de los ejemplos de aplicación mencionados anteriormente, los hipergrafos dirigidos han sido también empleados en el área de representación de conocimiento. En concreto, este tipo de hipergrafos se han usado para el cálculo de módulos de ontologías. Una ontología puede ser definida como un conjunto de axiomas que especifican formalmente un conjunto de símbolos y sus relaciones, mientras que un modulo puede ser entendido como un subconjunto de axiomas de la ontología que recoge todo el conocimiento que almacena la ontología sobre un conjunto especifico de símbolos y sus relaciones. En la tesis nos hemos centrado solamente en módulos que han sido calculados usando la técnica de localidad sintáctica. Debido a que las ontologías pueden ser muy grandes, el cálculo de módulos puede facilitar las tareas de re-utilización y mantenimiento de dichas ontologías. Sin embargo, analizar todos los posibles módulos de una ontología es, en general, muy costoso porque el numero de módulos crece de forma exponencial con respecto al número de símbolos y de axiomas de la ontología. Afortunadamente, los axiomas de una ontología pueden ser divididos en particiones conocidas como átomos. Cada átomo representa un conjunto máximo de axiomas que siempre aparecen juntos en un modulo. La decomposición atómica de una ontología es definida como un grafo dirigido de tal forma que cada nodo del grafo corresponde con un átomo y cada arista define una dependencia entre una pareja de átomos. En esta tesis introducimos el concepto de“axiom dependency hypergraph” que generaliza el concepto de descomposición atómica de una ontología. Un modulo en una ontología correspondería con un componente conexo en este tipo de hipergrafos y un átomo de una ontología con un componente fuertemente conexo. Hemos adaptado la implementación de nuestros algoritmos para que funcionen también con axiom dependency hypergraphs y poder de esa forma calcular los átomos de una ontología. Para demostrar la viabilidad de esta idea, hemos incorporado nuestros algoritmos en una aplicación que hemos desarrollado para la extracción de módulos y la descomposición atómica de ontologías. A la aplicación la hemos llamado HyS y hemos estudiado sus tiempos de ejecución usando una selección de ontologías muy conocidas del área biomédica, la mayoría disponibles en el portal de Internet NCBO. Los resultados de la evaluación muestran que los tiempos de ejecución de HyS son mucho mejores que las aplicaciones más rápidas conocidas. ABSTRACT Directed hypergraphs are an intuitive modelling formalism that have been used in problems related to propositional logic, relational databases, computational linguistic and machine learning. Directed hypergraphs are also presented as an alternative to directed (bipartite) graphs to facilitate the study of the interactions between components of complex systems that cannot naturally be modelled as binary relations. In this context, they are known as hyper-networks. A directed hypergraph is a generalization of a directed graph suitable for representing many-to-many relationships. While an edge in a directed graph defines a relation between two nodes of the graph, a hyperedge in a directed hypergraph defines a relation between two sets of nodes. Strong-connectivity is an equivalence relation that induces a partition of the set of nodes of a directed hypergraph into strongly-connected components. These components can be collapsed into single nodes. As result, the size of the original hypergraph can significantly be reduced if the strongly-connected components have many nodes. This approach might contribute to better understand how the nodes of a hypergraph are connected, in particular when the hypergraphs are large. In the case of directed graphs, there are efficient algorithms that can be used to compute the strongly-connected components of large graphs. For instance, it has been shown that the macroscopic structure of the World Wide Web can be represented as a “bow-tie” diagram where more than 70% of the nodes are distributed into three large sets and one of these sets is a large strongly-connected component. This particular structure has been also observed in complex networks in other fields such as, e.g., biology. Similar studies cannot be conducted in a directed hypergraph because there does not exist any algorithm for computing the strongly-connected components of the hypergraph. In this thesis, we investigate ways to compute the strongly-connected components of directed hypergraphs. We present two new algorithms and we show their correctness and computational complexity. One of these algorithms is inspired by Tarjan’s algorithm for directed graphs. The second algorithm follows a simple approach to compute the stronglyconnected components. This approach is based on the fact that two nodes of a graph that are strongly-connected can also reach the same nodes. In other words, the connected component of each node is the same. Both algorithms are empirically evaluated to compare their performances. To this end, we have produced a selection of random directed hypergraphs inspired by existent and well-known random graphs models like Erd˝os-Renyi and Newman-Watts-Strogatz. Besides the application examples that we mentioned earlier, directed hypergraphs have also been employed in the field of knowledge representation. In particular, they have been used to compute the modules of an ontology. An ontology is defined as a collection of axioms that provides a formal specification of a set of terms and their relationships; and a module is a subset of an ontology that completely captures the meaning of certain terms as defined in the ontology. In particular, we focus on the modules computed using the notion of syntactic locality. As ontologies can be very large, the computation of modules facilitates the reuse and maintenance of these ontologies. Analysing all modules of an ontology, however, is in general not feasible as the number of modules grows exponentially in the number of terms and axioms of the ontology. Nevertheless, the modules can succinctly be represented using the Atomic Decomposition of an ontology. Using this representation, an ontology can be partitioned into atoms, which are maximal sets of axioms that co-occur in every module. The Atomic Decomposition is then defined as a directed graph such that each node correspond to an atom and each edge represents a dependency relation between two atoms. In this thesis, we introduce the notion of an axiom dependency hypergraph which is a generalization of the atomic decomposition of an ontology. A module in the ontology corresponds to a connected component in the hypergraph, and the atoms of the ontology to the strongly-connected components. We apply our algorithms for directed hypergraphs to axiom dependency hypergraphs and in this manner, we compute the atoms of an ontology. To demonstrate the viability of this approach, we have implemented the algorithms in the application HyS which computes the modules of ontologies and calculate their atomic decomposition. In the thesis, we provide an experimental evaluation of HyS with a selection of large and prominent biomedical ontologies, most of which are available in the NCBO Bioportal. HyS outperforms state-of-the-art implementations in the tasks of extracting modules and computing the atomic decomposition of these ontologies.
Resumo:
Este proyecto se centra en la construcción de una herramienta para la gestión de contenidos de muy diversos tipos, siendo fácilmente adaptable a cada uno de los contextos. Permite guardar los contenidos necesarios gracias a un formulario previamente personalizado, de este modo hay un editor que se dedica solamente a la introducción de los contenidos y un administrador que personaliza los campos del formulario según los contenidos. En esencia la herramienta sirve de apoyo a dos tipos de usuario, desarrolladores (administrador) y redactores (editor), a los primeros les simplifica las tareas de conceptualización de las estructuras de datos de las que se desea tener persistencia y sirve como base para construir los editores que usan los redactores, por otro lado proporciona un API sencillo, potente y ágil para recuperar los datos introducidos por los redactores. La herramienta a su vez está pensada para ser interoperable, es decir, no obliga a usar un tipo de almacenamiento persistente concreto. Puede utilizar desde los sencillos archivos de texto, con lo que puede desplegarse en servidores treméndamente básicos. Por otro lado, si se necesita potencia en las búsquedas, nada debe impedir el uso de bases de datos relacionales como MySql. O incluso si se quiere dar un paso más y se quiere aprovechar la flexibilidad, potencia y maleabilidad de las bases de datos NoSql (como MongoDB) no es costoso, lo que hay que hacer es implementar una nueva clase de tipo PersistentManager y desarrollar los tipos de búsqueda y recuperación de contenidos que se necesiten. En la versión inicial de la herramienta se han implementado estos tres tipos de almacenes, nada impide usar sólo alguno de ellos y desechar el resto o implementar uno nuevo. Desde el punto de vista de los redactores, les ofrece un entorno sencillo y potente para poder realizar las tareas típicas denominadas CRUD (Create Read Update Delete, Crear Leer Actualizar y Borrar), un redactor podrá crear, buscar, re-aprovechar e incluso planificar publicación de contenidos en el tiempo. ABSTRACT This project focuses on building a tool for content management of many types, being easily adaptable to each context. Saves the necessary content through a previously designed form, thus there will be an editor working only on the introduction of the contents and there will be an administrator to customize the form fields as contents. Essentially the tool provides support for two types of users, developers (administrator) and editors, the first will have simplified the tasks of conceptualization of data structures which are desired to be persistent and serve as the basis for building the structures that will be used by editors, on the other hand provides a simple, powerful and agile API to retrieve the data entered by the editors. The tool must also be designed to be interoperable, which means not to be bound by the use of a particular type of persistent storage. You can use simple text files, which can be deployed in extremely basic servers. On the other hand, if power is needed in searches, nothing should prevent the use of relational databases such as MySQL. Or even if you want to go a step further and want to take advantage of the flexibility, power and malleability of NoSQL databases (such as MongoDB) it will not be difficult, you will only need to implement a new class of PersistentManager type and develop the type of search and query of content as needed. In the initial version of the tool these three types of storage have been implemented, it will be entitled to use only one of them and discard the rest or implement a new one. From the point of view of the editors, it offers a simple and powerful environment to perform the typical tasks called CRUD (Create Read Update Delete), an editor can create, search, re-use and even plan publishing content in time.
Resumo:
Las entrevistas son las técnicas de elicitación más utilizadas en la Ingeniería de Requisitos (IR). Sin embargo, existen pocos trabajos de investigación centrados en estas técnicas y aún menos estudios experimentales. Recientemente hemos experimentado para analizar la efectividad de las entrevistas estructuradas y no estructuradas. Los resultados se combinaron con otros de estudios experimentales realizados en el campo de Sistemas de Información. Para ello se aplicó el meta-análisis, con el objetivo de desarrollar directrices para usar las entrevistas en IR. Sin embargo, se han obtenido pocas debido a la diversidad, en términos de variables respuesta, de los estudios primarios. Aunque los estudios meta-analizados parecen similares según sus diseños, fijándonos en las amenazas a la validez se identifican más diferencias que similitudes. El análisis de estas amenazas puede ser un medio para comprender cómo mejorar el diseño de futuras replicaciones, ejecutadas para generar nuevas evidencias y mejorar resultados de los metaanálisis.
Resumo:
En la actualidad, las personas infectadas por el VIH con acceso a tratamiento retrasan indefinidamente su entrada en la fase SIDA de la enfermedad, convirtiéndose en pacientes crónicos. Un mayor conocimiento del comportamiento del virus y de cómo afecta a las personas infectadas podría conducirnos a optimizar el tratamiento y con ello mejorar la calidad de vida de los pacientes. En este contexto aparece la minería de datos, un conjunto de metodologías que, aplicadas a grandes bases de datos, nos permiten obtener información novedosa y potencialmente útil oculta en ellas. Este trabajo de investigación realiza una primera aproximación al problema mediante la búsqueda de asociaciones en una base de datos en la que se registran las historias clínicas electrónicas de personas infectadas que son tratadas en el Hospital Clínic de Barcelona.