11 resultados para B. Constitutive behaviour

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to provide information on the behaviour of steel prestressing wires under likely conditions that could be expected during a fire or impact loads. Four loadings were investigated: a) the influence of strain rate – from 10–3 to 600 s–1 – at room temperature, b) the influence of temperature – from 24 to 600 °C – at low strain rate, c) the influence of the joint effect of strain rate and temperature, and d) damage after three plausible fire scenarios. At room temperature it was found that using “static” values is a safe option. At high temperatures our results are in agreement with design codes. Regarding the joint effect of temperature and strain rate, mechanical properties decrease with increasing temperature, although for a given temperature, yield stress and tensile strength increase with strain rate. The data provided can be used profitably to model the mechanical behaviour of steel wires under different scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on our needs, that is to say, through precise simulation of the impact phenomena that may occur inside a jet engine turbine with an explicit non-linear finite element code, four new material models are postulated. Each one of is calibrated for four high-performance alloys that can be encountered in a modern jet engine. A new uncoupled material model for high strain and ballistic is proposed. Based on a Johnson-Cook type model, the proposed formulation introduces the effect of the third deviatoric invariant by means of three different Lode angle dependent functions. The Lode dependent functions are added to both plasticity and failure models. The postulated model is calibrated for a 6061-T651 aluminium alloy with data taken from the literature. The fracture pattern predictability of the JCX material model is shown performing numerical simulations of various quasi-static and dynamic tests. As an extension of the above-mentioned model, a modification in the thermal softening behaviour due to phase transformation temperatures is developed (JCXt). Additionally, a Lode angle dependent flow stress is defined. Analysing the phase diagram and high temperature tests performed, phase transformation temperatures of the FV535 stainless steel are determined. The postulated material model constants for the FV535 stainless steel are calibrated. A coupled elastoplastic-damage material model for high strain and ballistic applications is presented (JCXd). A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law and in the Johnson-Cook type constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. A transversely isotropic material model for directionally solidified alloys is presented. The proposed yield function is based a single linear transformation of the stress tensor. The linear operator weighs the degree of anisotropy of the yield function. The elastic behaviour, as well as the hardening, are considered isotropic. To model the hardening, a Johnson-Cook type relation is adopted. A material vector is included in the model implementation. The failure is modelled with the Cockroft-Latham failure criterion. The material vector allows orienting the reference orientation in any other that the user may need. The model is calibrated for the MAR-M 247 directionally solidified nickel-base superalloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology has been developed for characterising the mechanical behaviour of concrete, based on the damaged plasticity model, enriched with a user subroutine (V)USDFLD in order to capture better the ductility of the material under moderate confining pressures. The model has been applied in the context of the international benchmark IRIS_2012, organised by the OECD/NEA/CSNI Nuclear Energy Agency, dealing with impacts of rigid and deformable missiles against reinforced concrete targets. A slightly modified version of the concrete damaged plasticity model was used to represent the concrete. The simulation results matched very well the observations made during the actual tests. Particularly successful predictions involved the energy spent by the rigid missile in perforating the target, the crushed length of the deformable missile, the crushed and cracked areas of the concrete target, and the values of the strains recorded at a number of locations in the concrete slab.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical analysis is a suitable tool in the design of complex reinforced concrete structures under extreme impulsive loadings such as impacts or explosions at close range. Such events may be the result of terrorist attacks. Reinforced concrete is commonly used for buildings and infrastructures. For this reason, the ability to accurately run numerical simulations of concrete elements subjected to blast loading is needed. In this context, reliable constitutive models for concrete are of capital importance. In this research numerical simulations using two different constitutive models for concrete (Continuous Surface Cap Model and Brittle Damage Model) have been carried out using LS-DYNA. Two experimental benchmark tests have been taken as reference. The results of the numerical simulations with the aforementioned constitutive models show different abilities to accurately represent the structural response of the reinforced concrete elements studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la actualidad existe un gran conocimiento en la caracterización de rellenos hidráulicos, tanto en su caracterización estática, como dinámica. Sin embargo, son escasos en la literatura estudios más generales y globales de estos materiales, muy relacionados con sus usos y principales problemáticas en obras portuarias y mineras. Los procedimientos semi‐empíricos para la evaluación del efecto silo en las celdas de cajones portuarios, así como para el potencial de licuefacción de estos suelos durantes cargas instantáneas y terremotos, se basan en estudios donde la influencia de los parámetros que los rigen no se conocen en gran medida, dando lugar a resultados con considerable dispersión. Este es el caso, por ejemplo, de los daños notificados por el grupo de investigación del Puerto de Barcelona, la rotura de los cajones portuarios en el Puerto de Barcelona en 2007. Por estos motivos y otros, se ha decidido desarrollar un análisis para la evaluación de estos problemas mediante la propuesta de una metodología teórico‐numérica y empírica. El enfoque teórico‐numérico desarrollado en el presente estudio se centra en la determinación del marco teórico y las herramientas numéricas capaces de solventar los retos que presentan estos problemas. La complejidad del problema procede de varios aspectos fundamentales: el comportamiento no lineal de los suelos poco confinados o flojos en procesos de consolidación por preso propio; su alto potencial de licuefacción; la caracterización hidromecánica de los contactos entre estructuras y suelo (camino preferencial para el flujo de agua y consolidación lateral); el punto de partida de los problemas con un estado de tensiones efectivas prácticamente nulo. En cuanto al enfoque experimental, se ha propuesto una metodología de laboratorio muy sencilla para la caracterización hidromecánica del suelo y las interfaces, sin la necesidad de usar complejos aparatos de laboratorio o procedimientos excesivamente complicados. Este trabajo incluye por tanto un breve repaso a los aspectos relacionados con la ejecución de los rellenos hidráulicos, sus usos principales y los fenómenos relacionados, con el fin de establecer un punto de partida para el presente estudio. Este repaso abarca desde la evolución de las ecuaciones de consolidación tradicionales (Terzaghi, 1943), (Gibson, English & Hussey, 1967) y las metodologías de cálculo (Townsend & McVay, 1990) (Fredlund, Donaldson and Gitirana, 2009) hasta las contribuciones en relación al efecto silo (Ranssen, 1985) (Ravenet, 1977) y sobre el fenómeno de la licuefacción (Casagrande, 1936) (Castro, 1969) (Been & Jefferies, 1985) (Pastor & Zienkiewicz, 1986). Con motivo de este estudio se ha desarrollado exclusivamente un código basado en el método de los elementos finitos (MEF) empleando el programa MATLAB. Para ello, se ha esablecido un marco teórico (Biot, 1941) (Zienkiewicz & Shiomi, 1984) (Segura & Caron, 2004) y numérico (Zienkiewicz & Taylor, 1989) (Huerta & Rodríguez, 1992) (Segura & Carol, 2008) para resolver problemas de consolidación multidimensional con condiciones de contorno friccionales, y los correspondientes modelos constitutivos (Pastor & Zienkiewicz, 1986) (Fiu & Liu, 2011). Asimismo, se ha desarrollado una metodología experimental a través de una serie de ensayos de laboratorio para la calibración de los modelos constitutivos y de la caracterización de parámetros índice y de flujo (Castro, 1969) (Bahda 1997) (Been & Jefferies, 2006). Para ello se han empleado arenas de Hostun como material (relleno hidráulico) de referencia. Como principal aportación se incluyen una serie de nuevos ensayos de corte directo para la caracterización hidromecánica de la interfaz suelo – estructura de hormigón, para diferentes tipos de encofrados y rugosidades. Finalmente, se han diseñado una serie de algoritmos específicos para la resolución del set de ecuaciones diferenciales de gobierno que definen este problema. Estos algoritmos son de gran importancia en este problema para tratar el procesamiento transitorio de la consolidación de los rellenos hidráulicos, y de otros efectos relacionados con su implementación en celdas de cajones, como el efecto silo y la licuefacciones autoinducida. Para ello, se ha establecido un modelo 2D axisimétrico, con formulación acoplada u‐p para elementos continuos y elementos interfaz (de espesor cero), que tratan de simular las condiciones de estos rellenos hidráulicos cuando se colocan en las celdas portuarias. Este caso de estudio hace referencia clara a materiales granulares en estado inicial muy suelto y con escasas tensiones efectivas, es decir, con prácticamente todas las sobrepresiones ocasionadas por el proceso de autoconsolidación (por peso propio). Por todo ello se requiere de algoritmos numéricos específicos, así como de modelos constitutivos particulares, para los elementos del continuo y para los elementos interfaz. En el caso de la simulación de diferentes procedimientos de puesta en obra de los rellenos se ha requerido la modificacion de los algoritmos empleados para poder así representar numéricamente la puesta en obra de estos materiales, además de poder realizar una comparativa de los resultados para los distintos procedimientos. La constante actualización de los parámetros del suelo, hace también de este algoritmo una potente herramienta que permite establecer un interesante juego de perfiles de variables, tales como la densidad, el índice de huecos, la fracción de sólidos, el exceso de presiones, y tensiones y deformaciones. En definitiva, el modelo otorga un mejor entendimiento del efecto silo, término comúnmente usado para definir el fenómeno transitorio del gradiente de presiones laterales en las estructuras de contención en forma de silo. Finalmente se incluyen una serie de comparativas entre los resultados del modelo y de diferentes estudios de la literatura técnica, tanto para el fenómeno de las consolidaciones por preso propio (Fredlund, Donaldson & Gitirana, 2009) como para el estudio del efecto silo (Puertos del Estado, 2006, EuroCódigo (2006), Japan Tech, Stands. (2009), etc.). Para concluir, se propone el diseño de un prototipo de columna de decantación con paredes friccionales, como principal propuesta de futura línea de investigación. Wide research is nowadays available on the characterization of hydraulic fills in terms of either static or dynamic behavior. However, reported comprehensive analyses of these soils when meant for port or mining works are scarce. Moreover, the semi‐empirical procedures for assessing the silo effect on cells in floating caissons, and the liquefaction potential of these soils during sudden loads or earthquakes are based on studies where the underlying influence parameters are not well known, yielding results with significant scatter. This is the case, for instance, of hazards reported by the Barcelona Liquefaction working group, with the failure of harbor walls in 2007. By virtue of this, a complex approach has been undertaken to evaluate the problem by a proposal of numerical and laboratory methodology. Within a theoretical and numerical scope, the study is focused on the numerical tools capable to face the different challenges of this problem. The complexity is manifold; the highly non‐linear behavior of consolidating soft soils; their potentially liquefactable nature, the significance of the hydromechanics of the soil‐structure contact, the discontinuities as preferential paths for water flow, setting “negligible” effective stresses as initial conditions. Within an experimental scope, a straightforward laboratory methodology is introduced for the hydromechanical characterization of the soil and the interface without the need of complex laboratory devices or cumbersome procedures. Therefore, this study includes a brief overview of the hydraulic filling execution, main uses (land reclamation, filled cells, tailing dams, etc.) and the underlying phenomena (self‐weight consolidation, silo effect, liquefaction, etc.). It comprises from the evolution of the traditional consolidation equations (Terzaghi, 1943), (Gibson, English, & Hussey, 1967) and solving methodologies (Townsend & McVay, 1990) (Fredlund, Donaldson and Gitirana, 2009) to the contributions in terms of silo effect (Ranssen, 1895) (Ravenet, 1977) and liquefaction phenomena (Casagrande, 1936) (Castro, 1969) (Been & Jefferies, 1985) (Pastor & Zienkiewicz, 1986). The novelty of the study lies on the development of a Finite Element Method (FEM) code, exclusively formulated for this problem. Subsequently, a theoretical (Biot, 1941) (Zienkiewicz and Shiomi, 1984) (Segura and Carol, 2004) and numerical approach (Zienkiewicz and Taylor, 1989) (Huerta, A. & Rodriguez, A., 1992) (Segura, J.M. & Carol, I., 2008) is introduced for multidimensional consolidation problems with frictional contacts and the corresponding constitutive models (Pastor & Zienkiewicz, 1986) (Fu & Liu, 2011). An experimental methodology is presented for the laboratory test and material characterization (Castro 1969) (Bahda 1997) (Been & Jefferies 2006) using Hostun sands as reference hydraulic fill. A series of singular interaction shear tests for the interface calibration is included. Finally, a specific model algorithm for the solution of the set of differential equations governing the problem is presented. The process of consolidation and settlements involves a comprehensive simulation of the transient process of decantation and the build‐up of the silo effect in cells and certain phenomena related to self‐compaction and liquefaction. For this, an implementation of a 2D axi‐syimmetric coupled model with continuum and interface elements, aimed at simulating conditions and self‐weight consolidation of hydraulic fills once placed into floating caisson cells or close to retaining structures. This basically concerns a loose granular soil with a negligible initial effective stress level at the onset of the process. The implementation requires a specific numerical algorithm as well as specific constitutive models for both the continuum and the interface elements. The simulation of implementation procedures for the fills has required the modification of the algorithm so that a numerical representation of these procedures is carried out. A comparison of the results for the different procedures is interesting for the global analysis. Furthermore, the continuous updating of the model provides an insightful logging of variable profiles such as density, void ratio and solid fraction profiles, total and excess pore pressure, stresses and strains. This will lead to a better understanding of complex phenomena such as the transient gradient in lateral pressures due to silo effect in saturated soils. Interesting model and literature comparisons for the self‐weight consolidation (Fredlund, Donaldson, & Gitirana, 2009) and the silo effect results (Puertos del Estado (2006), EuroCode (2006), Japan Tech, Stands. (2009)). This study closes with the design of a decantation column prototype with frictional walls as the main future line of research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion for high strain and ballistic applications is presented. A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson–Cook failure criterion. The weakening in the elastic law and in the Johnson–Cook-like constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. Additionally, the mesh size dependency on the prediction of the fracture patterns was studied, showing that was crucial to predict such patterns

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En una planta de fusión, los materiales en contacto con el plasma así como los materiales de primera pared experimentan condiciones particularmente hostiles al estar expuestos a altos flujos de partículas, neutrones y grandes cargas térmicas. Como consecuencia de estas diferentes y complejas condiciones de trabajo, el estudio, desarrollo y diseño de estos materiales es uno de los más importantes retos que ha surgido en los últimos años para la comunidad científica en el campo de los materiales y la energía. Debido a su baja tasa de erosión, alta resistencia al sputtering, alta conductividad térmica, muy alto punto de fusión y baja retención de tritio, el tungsteno (wolframio) es un importante candidato como material de primera pared y como posible material estructural avanzado en fusión por confinamiento magnético e inercial. Sin embargo, el tiempo de vida del tungsteno viene controlado por diversos factores como son su respuesta termo-mecánica en la superficie, la posibilidad de fusión y el fallo por acumulación de helio. Es por ello que el tiempo de vida limitado por la respuesta mecánica del tungsteno (W), y en particular su fragilidad, sean dos importantes aspectos que tienes que ser investigados. El comportamiento plástico en materiales refractarios con estructura cristalina cúbica centrada en las caras (bcc) como el tungsteno está gobernado por las dislocaciones de tipo tornillo a escala atómica y por conjuntos e interacciones de dislocaciones a escalas más grandes. El modelado de este complejo comportamiento requiere la aplicación de métodos capaces de resolver de forma rigurosa cada una de las escalas. El trabajo que se presenta en esta tesis propone un modelado multiescala que es capaz de dar respuestas ingenieriles a las solicitudes técnicas del tungsteno, y que a su vez está apoyado por la rigurosa física subyacente a extensas simulaciones atomísticas. En primer lugar, las propiedades estáticas y dinámicas de las dislocaciones de tipo tornillo en cinco potenciales interatómicos de tungsteno son comparadas, determinando cuáles de ellos garantizan una mayor fidelidad física y eficiencia computacional. Las grandes tasas de deformación asociadas a las técnicas de dinámica molecular hacen que las funciones de movilidad de las dislocaciones obtenidas no puedan ser utilizadas en los siguientes pasos del modelado multiescala. En este trabajo, proponemos dos métodos alternativos para obtener las funciones de movilidad de las dislocaciones: un modelo Monte Cario cinético y expresiones analíticas. El conjunto de parámetros necesarios para formular el modelo de Monte Cario cinético y la ley de movilidad analítica son calculados atomísticamente. Estos parámetros incluyen, pero no se limitan a: la determinación de las entalpias y energías de formación de las parejas de escalones que forman las dislocaciones, la parametrización de los efectos de no Schmid característicos en materiales bcc,etc. Conociendo la ley de movilidad de las dislocaciones en función del esfuerzo aplicado y la temperatura, se introduce esta relación como ecuación de flujo dentro de un modelo de plasticidad cristalina. La predicción del modelo sobre la dependencia del límite de fluencia con la temperatura es validada experimentalmente con ensayos uniaxiales en tungsteno monocristalino. A continuación, se calcula el límite de fluencia al aplicar ensayos uniaxiales de tensión para un conjunto de orientaciones cristalográticas dentro del triángulo estándar variando la tasa de deformación y la temperatura de los ensayos. Finalmente, y con el objetivo de ser capaces de predecir una respuesta más dúctil del tungsteno para una variedad de estados de carga, se realizan ensayos biaxiales de tensión sobre algunas de las orientaciones cristalográficas ya estudiadas en función de la temperatura.-------------------------------------------------------------------------ABSTRACT ----------------------------------------------------------Tungsten and tungsten alloys are being considered as leading candidates for structural and functional materials in future fusion energy devices. The most attractive properties of tungsten for the design of magnetic and inertial fusion energy reactors are its high melting point, high thermal conductivity, low sputtering yield and low longterm disposal radioactive footprint. However, tungsten also presents a very low fracture toughness, mostly associated with inter-granular failure and bulk plasticity, that limits its applications. As a result of these various and complex conditions of work, the study, development and design of these materials is one of the most important challenges that have emerged in recent years to the scientific community in the field of materials for energy applications. The plastic behavior of body-centered cubic (bcc) refractory metals like tungsten is governed by the kink-pair mediated thermally activated motion of h¿ (\1 11)i screw dislocations on the atomistic scale and by ensembles and interactions of dislocations at larger scales. Modeling this complex behavior requires the application of methods capable of resolving rigorously each relevant scale. The work presented in this thesis proposes a multiscale model approach that gives engineering-level responses to the technical specifications required for the use of tungsten in fusion energy reactors, and it is also supported by the rigorous underlying physics of extensive atomistic simulations. First, the static and dynamic properties of screw dislocations in five interatomic potentials for tungsten are compared, determining which of these ensure greater physical fidelity and computational efficiency. The large strain rates associated with molecular dynamics techniques make the dislocation mobility functions obtained not suitable to be used in the next steps of the multiscale model. Therefore, it is necessary to employ mobility laws obtained from a different method. In this work, we suggest two alternative methods to get the dislocation mobility functions: a kinetic Monte Carlo model and analytical expressions. The set of parameters needed to formulate the kinetic Monte Carlo model and the analytical mobility law are calculated atomistically. These parameters include, but are not limited to: enthalpy and energy barriers of kink-pairs as a function of the stress, width of the kink-pairs, non-Schmid effects ( both twinning-antitwinning asymmetry and non-glide stresses), etc. The function relating dislocation velocity with applied stress and temperature is used as the main source of constitutive information into a dislocation-based crystal plasticity framework. We validate the dependence of the yield strength with the temperature predicted by the model against existing experimental data of tensile tests in singlecrystal tungsten, with excellent agreement between the simulations and the measured data. We then extend the model to a number of crystallographic orientations uniformly distributed in the standard triangle and study the effects of temperature and strain rate. Finally, we perform biaxial tensile tests and provide the yield surface as a function of the temperature for some of the crystallographic orientations explored in the uniaxial tensile tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report on a first part of a study on the mechanisms leading to brittle fracture in neutron guides made of glass as structural element. Such devices are widely used to deliver thermal and cold neu tron beams to experimental lines in most large neutron research facilities. We present results on macroscopic properties of samples of guide glass substrates which are subjected to neutron irradiation at relatively large fluences. The results show a striking dependence of some of the macroscopic properties such as density, shape or surface curvature upon the specific chemical composition of a given glass. The relevance of the present findings for the installation of either replacement guides at the existing facilities or for the deployment of instruments for ongoing projects such as the European Spallation Source is briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tungsten (W) and its alloys are very promising materials for producing plasma-facing components (PFCs) in the fusion power reactors of the near future, even as a structural part in them. However, whereas the properties of pure tungsten are suitable for a PFC, its structural applications are still limited due to its low toughness, ductile to brittle transition temperature and recrystallization behaviour. Therefore, many efforts have been made to improve its performance by alloying tungsten with other elements. Hence, in this investigation, the thermo-mechanical performance of two new tungsten-tantalum materials has been evaluated. Materials with We5wt.%Ta and We15wt.%Ta were processed by mechanical alloying (MA) and later consolidation by hot isostatic pressing (HIP), with distinct settings for each composition. Thus, it was possible to determine the relationship between the microstructure and the addition of Ta with the macroscopic mechanical properties. These were measured by means of hardness, flexural strength and fracture toughness, in the temperature range of 300e1473 K. The microstructure and the fracture surfaces features of the tested materials were analysed by Field Emission Scanning Electron Microscopy (FESEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was designed to determine the effect of temperature on the mechanical strength (in both in vivo and post-exposure trials) of two alkaline cements (without OPC): (a) 100% fly ash (FA) and (b) 85% FA + 15% bauxite, the activated alkaline solution used was 85% 10-M NaOH + 15% sodium silicate. A Type I 42.5 R Portland cement was used as a control. Two series of trials were conducted: (i) in vivo trials in which bending and compressive strength, fracture toughness and modulus of elasticity were determined at different temperatures; and (ii) post-firing trials, assessing residual bending and compres-sive strength after a 1-h exposure to high temperatures and subsequent cooling. The findings showed that from 25 to 600 C, irrespective of the type of test (in vivo or post-firing), compressive mechanical strength rose, with the specimens exhibiting elastic behaviour and consequently brittle failure. At tem-peratures of over 600 C, behaviour differed depending on the type of test: (i) in the in vivo trials the high temperature induced pseudo-plastic strain and a decline in mechanical strength that did not necessarily entail specimen failure; (ii) in the post-firing trials, compressive strength rose.