13 resultados para Automatic theorem proving
em Universidad Politécnica de Madrid
Resumo:
Una de las dificultades principales en el desarrollo de software es la ausencia de un marco conceptual adecuado para su estudio. Una propuesta la constituye el modelo transformativo, que entiende el desarrollo de software como un proceso iterativo de transformación de especificaciones: se parte de una especificación inicial que va transformándose sucesivamente hasta obtener una especificación final que se toma como programa. Este modelo básico puede llevarse a la práctica de varias maneras. En concreto, la aproximación deductiva toma una sentencia lógica como especificación inicial y su proceso transformador consiste en la demostración de la sentencia; como producto secundario de la demostración se deriva un programa que satisface la especificación inicial. La tesis desarrolla un método deductivo para la derivación de programas funcionales con patrones, escritos en un lenguaje similar a Hope. El método utiliza una lógica multigénero, cuya relación con el lenguaje de programación es estudiada. También se identifican los esquemas de demostración necesarios para la derivación de funciones con patrones, basados en la demostración independiente de varias subsentencias. Cada subsentencia proporciona una subespecificación de una ecuación del futuro programa a derivar. Nuestro método deductivo está inspirado en uno previo de Zohar Manna y Richard Waldinger, conocido como el cuadro deductivo, que deriva programas en un lenguaje similar a Lisp. El nuevo método es una modificación del cuadro de estos autores, que incorpora géneros y permite demostrar una especificación mediante varios cuadros. Cada cuadro demuestra una subespecificación y por tanto deriva una ecuación del programa. Se prevén mecanismos para que los programas derivados puedan contener definiciones locales con patrones y variables anónimas y sinónimas y para que las funciones auxiliares derivadas no usen variables de las funciones principales. La tesis se completa con varios ejemplos de aplicación, un mecanismo que independentiza el método del lenguaje de programación y un prototipo de entorno interactivo de derivación deductiva. Categorías y descriptores de materia CR D.l.l [Técnicas de programación]: Programación funcional; D.2.10 [Ingeniería de software]: Diseño - métodos; F.3.1 [Lógica y significado de los programas]: Especificación, verificación y razonamiento sobre programas - lógica de programas; F.3.3 [Lógica y significado de los programas]: Estudios de construcciones de programas - construcciones funcionales; esquemas de programa y de recursion; 1.2.2 [Inteligencia artificial]: Programación automática - síntesis de programas; 1.2.3 [Inteligencia artificial]: Deducción y demostración de teoremas]: extracción de respuesta/razón; inducción matemática. Términos generales Programación funcional, síntesis de programas, demostración de teoremas. Otras palabras claves y expresiones Funciones con patrones, cuadro deductivo, especificación parcial, inducción estructural, teorema de descomposición.---ABSTRACT---One of the main difficulties in software development is the lack of an adequate conceptual framework of study. The transformational model is one such proposal that conceives software development as an iterative process of specifications transformation: an initial specification is developed and successively transformed until a final specification is obtained and taken as a program. This basic model can be implemented in several ways. The deductive approach takes a logical sentence as the initial specification and its proof constitutes the transformational process; as a byproduct of the proof, a program which satisfies the initial specification is derived. In the thesis, a deductive method for the derivation of Hope-like functional programs with patterns is developed. The method uses a many-sorted logic, whose relation to the programming language is studied. Also the proof schemes necessary for the derivation of functional programs with patterns, based on the independent proof of several subsentences, are identified. Each subsentence provides a subspecification of one equation of the future program to be derived. Our deductive method is inspired on a previous one by Zohar Manna and Richard Waldinger, known as the deductive tableau, which derives Lisp-like programs. The new method incorporates sorts in the tableau and allows to prove a sentence with several tableaux. Each tableau proves a subspecification and therefore derives an equation of the program. Mechanisms are included to allow the derived programs to contain local definitions with patterns and anonymous and synonymous variables; also, the derived auxiliary functions cannot reference parameters of their main functions. The thesis is completed with several application examples, i mechanism to make the method independent from the programming language and an interactive environment prototype for deductive derivation. CR categories and subject descriptors D.l.l [Programming techniques]: Functional programming; D.2.10 [Software engineering]: Design - methodologies; F.3.1 [Logics and meanings of programa]: Specifying and verifying and reasoning about programs - logics of programs; F.3.3 [Logics and meanings of programs]: Studies of program constructs - functional constructs; program and recursion schemes; 1.2.2 [Artificial intelligence]: Automatic programming - program synthesis; 1.2.3 [Artificial intelligence]: Deduction and theorem proving - answer/reason extraction; mathematical induction. General tenas Functional programming, program synthesis, theorem proving. Additional key words and phrases Functions with patterns, deductive tableau, structural induction, partial specification, descomposition theorem.
Resumo:
Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.
Resumo:
Proof-Carrying Code (PCC) is a general approach to mobile code safety in which programs are augmented with a certificate (or proof). The intended benefit is that the program consumer can locally validate the certificate w.r.t. the "untrustcd" program by means of a certificate checker a process which should be much simpler, efficient, and automatic than generating the original proof. The practical uptake of PCC greatly depends on the existence of a variety of enabling technologies which allow both proving programs correct and replacing a costly verification process by an efficient checking proceduri on th( consumer side. In this work we propose Abstraction- Carrying Code (ACC), a novel approach which uses abstract interpretation as enabling technology. We argue that the large body of applications of abstract interpretation to program verification is amenable to the overall PCC scheme. In particular, we rely on an expressive class of safely policies which can be defined over different abstract domains. We use an abstraction (or abstract model) of the program computed by standard static analyzers as a certificate. The validity of the abstraction on ihe consumer side is checked in a single pass by a very efficient and specialized abstract-interpreter. We believe that ACC brings the expressiveness, flexibility and automation which is inherent in abstract interpretation techniques to the area of mobile code safety.
Resumo:
This paper describes a preprocessing module for improving the performance of a Spanish into Spanish Sign Language (Lengua de Signos Espanola: LSE) translation system when dealing with sparse training data. This preprocessing module replaces Spanish words with associated tags. The list with Spanish words (vocabulary) and associated tags used by this module is computed automatically considering those signs that show the highest probability of being the translation of every Spanish word. This automatic tag extraction has been compared to a manual strategy achieving almost the same improvement. In this analysis, several alternatives for dealing with non-relevant words have been studied. Non-relevant words are Spanish words not assigned to any sign. The preprocessing module has been incorporated into two well-known statistical translation architectures: a phrase-based system and a Statistical Finite State Transducer (SFST). This system has been developed for a specific application domain: the renewal of Identity Documents and Driver's License. In order to evaluate the system a parallel corpus made up of 4080 Spanish sentences and their LSE translation has been used. The evaluation results revealed a significant performance improvement when including this preprocessing module. In the phrase-based system, the proposed module has given rise to an increase in BLEU (Bilingual Evaluation Understudy) from 73.8% to 81.0% and an increase in the human evaluation score from 0.64 to 0.83. In the case of SFST, BLEU increased from 70.6% to 78.4% and the human evaluation score from 0.65 to 0.82.
Resumo:
Although there has been a lot of interest in recognizing and understanding air traffic control (ATC) speech, none of the published works have obtained detailed field data results. We have developed a system able to identify the language spoken and recognize and understand sentences in both Spanish and English. We also present field results for several in-tower controller positions. To the best of our knowledge, this is the first time that field ATC speech (not simulated) is captured, processed, and analyzed. The use of stochastic grammars allows variations in the standard phraseology that appear in field data. The robust understanding algorithm developed has 95% concept accuracy from ATC text input. It also allows changes in the presentation order of the concepts and the correction of errors created by the speech recognition engine improving it by 17% and 25%, respectively, absolute in the percentage of fully correctly understood sentences for English and Spanish in relation to the percentages of fully correctly recognized sentences. The analysis of errors due to the spontaneity of the speech and its comparison to read speech is also carried out. A 96% word accuracy for read speech is reduced to 86% word accuracy for field ATC data for Spanish for the "clearances" task confirming that field data is needed to estimate the performance of a system. A literature review and a critical discussion on the possibilities of speech recognition and understanding technology applied to ATC speech are also given.
Resumo:
This work is part of an on-going collaborative project between the medical and signal processing communities to promote new research efforts on automatic OSA (Obstructive Apnea Syndrome) diagnosis. In this paper, we explore the differences noted in phonetic classes (interphoneme) across groups (control/apnoea) and analyze their utility for OSA detection
Resumo:
This paper describes a novel method to enhance current airport surveillance systems used in Advanced Surveillance Monitoring Guidance and Control Systems (A-SMGCS). The proposed method allows for the automatic calibration of measurement models and enhanced detection of nonideal situations, increasing surveillance products integrity. It is based on the definition of a set of observables from the surveillance processing chain and a rule based expert system aimed to change the data processing methods
Resumo:
We describe how to use a Granular Linguistic Model of a Phenomenon (GLMP) to assess e-learning processes. We apply this technique to evaluate algorithm learning using the GRAPHs learning environment.
Resumo:
We propose an analysis for detecting procedures and goals that are deterministic (i.e., that produce at most one solution at most once),or predicates whose clause tests are mutually exclusive (which implies that at most one of their clauses will succeed) even if they are not deterministic. The analysis takes advantage of the pruning operator in order to improve the detection of mutual exclusion and determinacy. It also supports arithmetic equations and disequations, as well as equations and disequations on terms,for which we give a complete satisfiability testing algorithm, w.r.t. available type information. Information about determinacy can be used for program debugging and optimization, resource consumption and granularity control, abstraction carrying code, etc. We have implemented the analysis and integrated it in the CiaoPP system, which also infers automatically the mode and type information that our analysis takes as input. Experiments performed on this implementation show that the analysis is fairly accurate and efficient.
Resumo:
Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier
Resumo:
One important issue emerging strongly in agriculture is related with the automatization of tasks, where the optical sensors play an important role. They provide images that must be conveniently processed. The most relevantimage processing procedures require the identification of green plants, in our experiments they come from barley and corn crops including weeds, so that some types of action can be carried out, including site-specific treatments with chemical products or mechanical manipulations. Also the identification of textures belonging to the soil could be useful to know some variables, such as humidity, smoothness or any others. Finally, from the point of view of the autonomous robot navigation, where the robot is equipped with the imaging system, some times it is convenient to know not only the soil information and the plants growing in the soil but also additional information supplied by global references based on specific areas. This implies that the images to be processed contain textures of three main types to be identified: green plants, soil and sky if any. This paper proposes a new automatic approach for segmenting these main textures and also to refine the identification of sub-textures inside the main ones. Concerning the green identification, we propose a new approach that exploits the performance of existing strategies by combining them. The combination takes into account the relevance of the information provided by each strategy based on the intensity variability. This makes an important contribution. The combination of thresholding approaches, for segmenting the soil and the sky, makes the second contribution; finally the adjusting of the supervised fuzzy clustering approach for identifying sub-textures automatically, makes the third finding. The performance of the method allows to verify its viability for automatic tasks in agriculture based on image processing
Resumo:
We report on a detailed study of the application and effectiveness of program analysis based on abstract interpretation to automatic program parallelization. We study the case of parallelizing logic programs using the notion of strict independence. We first propose and prove correct a methodology for the application in the parallelization task of the information inferred by abstract interpretation, using a parametric domain. The methodology is generic in the sense of allowing the use of different analysis domains. A number of well-known approximation domains are then studied and the transformation into the parametric domain defined. The transformation directly illustrates the relevance and applicability of each abstract domain for the application. Both local and global analyzers are then built using these domains and embedded in a complete parallelizing compiler. Then, the performance of the domains in this context is assessed through a number of experiments. A comparatively wide range of aspects is studied, from the resources needed by the analyzers in terms of time and memory to the actual benefits obtained from the information inferred. Such benefits are evaluated both in terms of the characteristics of the parallelized code and of the actual speedups obtained from it. The results show that data flow analysis plays an important role in achieving efficient parallelizations, and that the cost of such analysis can be reasonable even for quite sophisticated abstract domains. Furthermore, the results also offer significant insight into the characteristics of the domains, the demands of the application, and the trade-offs involved.
Resumo:
It is known that the techniques under the topic of Soft Computing have a strong capability of learning and cognition, as well as a good tolerance to uncertainty and imprecision. Due to these properties they can be applied successfully to Intelligent Vehicle Systems; ITS is a broad range of technologies and techniques that hold answers to many transportation problems. The unmannedcontrol of the steering wheel of a vehicle is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle; to reach it, information about the car state while a human driver is handling the car is taken and used to adjust, via iterative geneticalgorithms an appropriated fuzzy controller. To evaluate the obtained controllers, it will be considered the performance obtained in the track following task, as well as the smoothness of the driving carried out.