3 resultados para Automatic Inference
em Universidad Politécnica de Madrid
Resumo:
We propose an analysis for detecting procedures and goals that are deterministic (i.e., that produce at most one solution at most once),or predicates whose clause tests are mutually exclusive (which implies that at most one of their clauses will succeed) even if they are not deterministic. The analysis takes advantage of the pruning operator in order to improve the detection of mutual exclusion and determinacy. It also supports arithmetic equations and disequations, as well as equations and disequations on terms,for which we give a complete satisfiability testing algorithm, w.r.t. available type information. Information about determinacy can be used for program debugging and optimization, resource consumption and granularity control, abstraction carrying code, etc. We have implemented the analysis and integrated it in the CiaoPP system, which also infers automatically the mode and type information that our analysis takes as input. Experiments performed on this implementation show that the analysis is fairly accurate and efficient.
Resumo:
E-learning systems output a huge quantity of data on a learning process. However, it takes a lot of specialist human resources to manually process these data and generate an assessment report. Additionally, for formative assessment, the report should state the attainment level of the learning goals defined by the instructor. This paper describes the use of the granular linguistic model of a phenomenon (GLMP) to model the assessment of the learning process and implement the automated generation of an assessment report. GLMP is based on fuzzy logic and the computational theory of perceptions. This technique is useful for implementing complex assessment criteria using inference systems based on linguistic rules. Apart from the grade, the model also generates a detailed natural language progress report on the achieved proficiency level, based exclusively on the objective data gathered from correct and incorrect responses. This is illustrated by applying the model to the assessment of Dijkstra’s algorithm learning using a visual simulation-based graph algorithm learning environment, called GRAPHs
Resumo:
Effective automatic summarization usually requires simulating human reasoning such as abstraction or relevance reasoning. In this paper we describe a solution for this type of reasoning in the particular case of surveillance of the behavior of a dynamic system using sensor data. The paper first presents the approach describing the required type of knowledge with a possible representation. This includes knowledge about the system structure, behavior, interpretation and saliency. Then, the paper shows the inference algorithm to produce a summarization tree based on the exploitation of the physical characteristics of the system. The paper illustrates how the method is used in the context of automatic generation of summaries of behavior in an application for basin surveillance in the presence of river floods.