12 resultados para Automatic Data Processing.

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is part of an on-going collaborative project between the medical and signal processing communities to promote new research efforts on automatic OSA (Obstructive Apnea Syndrome) diagnosis. In this paper, we explore the differences noted in phonetic classes (interphoneme) across groups (control/apnoea) and analyze their utility for OSA detection

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the advancement of both, information technology in general, and databases in particular; data storage devices are becoming cheaper and data processing speed is increasing. As result of this, organizations tend to store large volumes of data holding great potential information. Decision Support Systems, DSS try to use the stored data to obtain valuable information for organizations. In this paper, we use both data models and use cases to represent the functionality of data processing in DSS following Software Engineering processes. We propose a methodology to develop DSS in the Analysis phase, respective of data processing modeling. We have used, as a starting point, a data model adapted to the semantics involved in multidimensional databases or data warehouses, DW. Also, we have taken an algorithm that provides us with all the possible ways to automatically cross check multidimensional model data. Using the aforementioned, we propose diagrams and descriptions of use cases, which can be considered as patterns representing the DSS functionality, in regard to DW data processing, DW on which DSS are based. We highlight the reusability and automation benefits that this can be achieved, and we think this study can serve as a guide in the development of DSS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, devices that monitor the health of structures consume a lot of power and need a lot of time to acquire, process, and send the information about the structure to the main processing unit. To decrease this time, fast electronic devices are starting to be used to accelerate this processing. In this paper some hardware algorithms implemented in an electronic logic programming device are described. The goal of this implementation is accelerate the process and diminish the information that has to be send. By reaching this goal, the time the processor needs for treating all the information is reduced and so the power consumption is reduced too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel method to enhance current airport surveillance systems used in Advanced Surveillance Monitoring Guidance and Control Systems (A-SMGCS). The proposed method allows for the automatic calibration of measurement models and enhanced detection of nonideal situations, increasing surveillance products integrity. It is based on the definition of a set of observables from the surveillance processing chain and a rule based expert system aimed to change the data processing methods

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports on an innovative approach that aims to reduce information management costs in data-intensive and cognitively-complex biomedical environments. Recognizing the importance of prominent high-performance computing paradigms and large data processing technologies as well as collaboration support systems to remedy data-intensive issues, it adopts a hybrid approach by building on the synergy of these technologies. The proposed approach provides innovative Web-based workbenches that integrate and orchestrate a set of interoperable services that reduce the data-intensiveness and complexity overload at critical decision points to a manageable level, thus permitting stakeholders to be more productive and concentrate on creative activities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RESUMEN Las enfermedades cardiovasculares constituyen en la actualidad la principal causa de mortalidad en el mundo y se prevé que sigan siéndolo en un futuro, generando además elevados costes para los sistemas de salud. Los dispositivos cardiacos implantables constituyen una de las opciones para el diagnóstico y el tratamiento de las alteraciones del ritmo cardiaco. La investigación clínica con estos dispositivos alcanza gran relevancia para combatir estas enfermedades que tanto afectan a nuestra sociedad. Tanto la industria farmacéutica y de tecnología médica, como los propios investigadores, cada día se ven involucrados en un mayor número de proyectos de investigación clínica. No sólo el incremento en su volumen, sino el aumento de la complejidad, están generando mayores gastos en las actividades asociadas a la investigación médica. Esto está conduciendo a las compañías del sector sanitario a estudiar nuevas soluciones que les permitan reducir los costes de los estudios clínicos. Las Tecnologías de la Información y las Comunicaciones han facilitado la investigación clínica, especialmente en la última década. Los sistemas y aplicaciones electrónicos han proporcionado nuevas posibilidades en la adquisición, procesamiento y análisis de los datos. Por otro lado, la tecnología web propició la aparición de los primeros sistemas electrónicos de adquisición de datos, que han ido evolucionando a lo largo de los últimos años. Sin embargo, la mejora y perfeccionamiento de estos sistemas sigue siendo crucial para el progreso de la investigación clínica. En otro orden de cosas, la forma tradicional de realizar los estudios clínicos con dispositivos cardiacos implantables precisaba mejorar el tratamiento de los datos almacenados por estos dispositivos, así como para su fusión con los datos clínicos recopilados por investigadores y pacientes. La justificación de este trabajo de investigación se basa en la necesidad de mejorar la eficiencia en la investigación clínica con dispositivos cardiacos implantables, mediante la reducción de costes y tiempos de desarrollo de los proyectos, y el incremento de la calidad de los datos recopilados y el diseño de soluciones que permitan obtener un mayor rendimiento de los datos mediante la fusión de datos de distintas fuentes o estudios. Con este fin se proponen como objetivos específicos de este proyecto de investigación dos nuevos modelos: - Un modelo de recuperación y procesamiento de datos para los estudios clínicos con dispositivos cardiacos implantables, que permita estructurar y estandarizar estos procedimientos, con el fin de reducir tiempos de desarrollo Modelos de Métrica para Sistemas Electrónicos de Adquisición de Datos y de Procesamiento para Investigación Clínica con Dispositivos Cardiacos Implantables de estas tareas, mejorar la calidad del resultado obtenido, disminuyendo en consecuencia los costes. - Un modelo de métrica integrado en un Sistema Electrónico de Adquisición de Datos (EDC) que permita analizar los resultados del proyecto de investigación y, particularmente del rendimiento obtenido del EDC, con el fin de perfeccionar estos sistemas y reducir tiempos y costes de desarrollo del proyecto y mejorar la calidad de los datos clínicos recopilados. Como resultado de esta investigación, el modelo de procesamiento propuesto ha permitido reducir el tiempo medio de procesamiento de los datos en más de un 90%, los costes derivados del mismo en más de un 85% y todo ello, gracias a la automatización de la extracción y almacenamiento de los datos, consiguiendo una mejora de la calidad de los mismos. Por otro lado, el modelo de métrica posibilita el análisis descriptivo detallado de distintos indicadores que caracterizan el rendimiento del proyecto de investigación clínica, haciendo factible además la comparación entre distintos estudios. La conclusión de esta tesis doctoral es que los resultados obtenidos han demostrado que la utilización en estudios clínicos reales de los dos modelos desarrollados ha conducido a una mejora en la eficiencia de los proyectos, reduciendo los costes globales de los mismos, disminuyendo los tiempos de ejecución, e incrementando la calidad de los datos recopilados. Las principales aportaciones de este trabajo de investigación al conocimiento científico son la implementación de un sistema de procesamiento inteligente de los datos almacenados por los dispositivos cardiacos implantables, la integración en el mismo de una base de datos global y optimizada para todos los modelos de dispositivos, la generación automatizada de un repositorio unificado de datos clínicos y datos de dispositivos cardiacos implantables, y el diseño de una métrica aplicada e integrable en los sistemas electrónicos de adquisición de datos para el análisis de resultados de rendimiento de los proyectos de investigación clínica. ABSTRACT Cardiovascular diseases are the main cause of death worldwide and it is expected to continue in the future, generating high costs for health care systems. Implantable cardiac devices have become one of the options for diagnosis and treatment of cardiac rhythm disorders. Clinical research with these devices has acquired great importance to fight against these diseases that affect so many people in our society. Both pharmaceutical and medical technology companies, and also investigators, are involved in an increasingly number of clinical research projects. The growth in volume and the increase in medical research complexity are contributing to raise the expenditure level associated with clinical investigation. This situation is driving health care sector companies to explore new solutions to reduce clinical trial costs. Information and Communication Technologies have facilitated clinical research, mainly in the last decade. Electronic systems and software applications have provided new possibilities in the acquisition, processing and analysis of clinical studies data. On the other hand, web technology contributed to the appearance of the first electronic data capture systems that have evolved during the last years. Nevertheless, improvement of these systems is still a key aspect for the progress of clinical research. On a different matter, the traditional way to develop clinical studies with implantable cardiac devices needed an improvement in the processing of the data stored by these devices, and also in the merging of these data with the data collected by investigators and patients. The rationale of this research is based on the need to improve the efficiency in clinical investigation with implantable cardiac devices, by means of reduction in costs and time of projects development, as well as improvement in the quality of information obtained from the studies and to obtain better performance of data through the merging of data from different sources or trials. The objective of this research project is to develop the next two models: • A model for the retrieval and processing of data for clinical studies with implantable cardiac devices, enabling structure and standardization of these procedures, in order to reduce the time of development of these tasks, to improve the quality of the results, diminish therefore costs. • A model of metric integrated in an Electronic Data Capture system (EDC) that allow to analyze the results of the research project, and particularly the EDC performance, in order to improve those systems and to reduce time and costs of the project, and to get a better quality of the collected clinical data. As a result of this work, the proposed processing model has led to a reduction of the average time for data processing by more than 90 per cent, of related costs by more than 85 per cent, and all of this, through automatic data retrieval and storage, achieving an improvement of quality of data. On the other hand, the model of metrics makes possible a detailed descriptive analysis of a set of indicators that characterize the performance of each research project, allowing inter‐studies comparison. This doctoral thesis results have demonstrated that the application of the two developed models in real clinical trials has led to an improvement in projects efficiency, reducing global costs, diminishing time in execution, and increasing quality of data collected. The main contributions to scientific knowledge of this research work are the implementation of an intelligent processing system for data stored by implantable cardiac devices, the integration in this system of a global and optimized database for all models of devices, the automatic creation of an unified repository of clinical data and data stored by medical devices, and the design of a metric to be applied and integrated in electronic data capture systems to analyze the performance results of clinical research projects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antecedentes Europa vive una situación insostenible. Desde el 2008 se han reducido los recursos de los gobiernos a raíz de la crisis económica. El continente Europeo envejece con ritmo constante al punto que se prevé que en 2050 habrá sólo dos trabajadores por jubilado [54]. A esta situación se le añade el aumento de la incidencia de las enfermedades crónicas, relacionadas con el envejecimiento, cuyo coste puede alcanzar el 7% del PIB de un país [51]. Es necesario un cambio de paradigma. Una nueva manera de cuidar de la salud de las personas: sustentable, eficaz y preventiva más que curativa. Algunos estudios abogan por el cuidado personalizado de la salud (pHealth). En este modelo las prácticas médicas son adaptadas e individualizadas al paciente, desde la detección de los factores de riesgo hasta la personalización de los tratamientos basada en la respuesta del individuo [81]. El cuidado personalizado de la salud está asociado a menudo al uso de las tecnologías de la información y comunicación (TICs) que, con su desarrollo exponencial, ofrecen oportunidades interesantes para la mejora de la salud. El cambio de paradigma hacia el pHealth está lentamente ocurriendo, tanto en el ámbito de la investigación como en la industria, pero todavía no de manera significativa. Existen todavía muchas barreras relacionadas a la economía, a la política y la cultura. También existen barreras puramente tecnológicas, como la falta de sistemas de información interoperables [199]. A pesar de que los aspectos de interoperabilidad están evolucionando, todavía hace falta un diseño de referencia especialmente direccionado a la implementación y el despliegue en gran escala de sistemas basados en pHealth. La presente Tesis representa un intento de organizar la disciplina de la aplicación de las TICs al cuidado personalizado de la salud en un modelo de referencia, que permita la creación de plataformas de desarrollo de software para simplificar tareas comunes de desarrollo en este dominio. Preguntas de investigación RQ1 >Es posible definir un modelo, basado en técnicas de ingeniería del software, que represente el dominio del cuidado personalizado de la salud de una forma abstracta y representativa? RQ2 >Es posible construir una plataforma de desarrollo basada en este modelo? RQ3 >Esta plataforma ayuda a los desarrolladores a crear sistemas pHealth complejos e integrados? Métodos Para la descripción del modelo se adoptó el estándar ISO/IEC/IEEE 42010por ser lo suficientemente general y abstracto para el amplio enfoque de esta tesis [25]. El modelo está definido en varias partes: un modelo conceptual, expresado a través de mapas conceptuales que representan las partes interesadas (stakeholders), los artefactos y la información compartida; y escenarios y casos de uso para la descripción de sus funcionalidades. El modelo fue desarrollado de acuerdo a la información obtenida del análisis de la literatura, incluyendo 7 informes industriales y científicos, 9 estándares, 10 artículos en conferencias, 37 artículos en revistas, 25 páginas web y 5 libros. Basándose en el modelo se definieron los requisitos para la creación de la plataforma de desarrollo, enriquecidos por otros requisitos recolectados a través de una encuesta realizada a 11 ingenieros con experiencia en la rama. Para el desarrollo de la plataforma, se adoptó la metodología de integración continua [74] que permitió ejecutar tests automáticos en un servidor y también desplegar aplicaciones en una página web. En cuanto a la metodología utilizada para la validación se adoptó un marco para la formulación de teorías en la ingeniería del software [181]. Esto requiere el desarrollo de modelos y proposiciones que han de ser validados dentro de un ámbito de investigación definido, y que sirvan para guiar al investigador en la búsqueda de la evidencia necesaria para justificarla. La validación del modelo fue desarrollada mediante una encuesta online en tres rondas con un número creciente de invitados. El cuestionario fue enviado a 134 contactos y distribuido en algunos canales públicos como listas de correo y redes sociales. El objetivo era evaluar la legibilidad del modelo, su nivel de cobertura del dominio y su potencial utilidad en el diseño de sistemas derivados. El cuestionario incluía preguntas cuantitativas de tipo Likert y campos para recolección de comentarios. La plataforma de desarrollo fue validada en dos etapas. En la primera etapa se utilizó la plataforma en un experimento a pequeña escala, que consistió en una sesión de entrenamiento de 12 horas en la que 4 desarrolladores tuvieron que desarrollar algunos casos de uso y reunirse en un grupo focal para discutir su uso. La segunda etapa se realizó durante los tests de un proyecto en gran escala llamado HeartCycle [160]. En este proyecto un equipo de diseñadores y programadores desarrollaron tres aplicaciones en el campo de las enfermedades cardio-vasculares. Una de estas aplicaciones fue testeada en un ensayo clínico con pacientes reales. Al analizar el proyecto, el equipo de desarrollo se reunió en un grupo focal para identificar las ventajas y desventajas de la plataforma y su utilidad. Resultados Por lo que concierne el modelo que describe el dominio del pHealth, la parte conceptual incluye una descripción de los roles principales y las preocupaciones de los participantes, un modelo de los artefactos TIC que se usan comúnmente y un modelo para representar los datos típicos que son necesarios formalizar e intercambiar entre sistemas basados en pHealth. El modelo funcional incluye un conjunto de 18 escenarios, repartidos en: punto de vista de la persona asistida, punto de vista del cuidador, punto de vista del desarrollador, punto de vista de los proveedores de tecnologías y punto de vista de las autoridades; y un conjunto de 52 casos de uso repartidos en 6 categorías: actividades de la persona asistida, reacciones del sistema, actividades del cuidador, \engagement" del usuario, actividades del desarrollador y actividades de despliegue. Como resultado del cuestionario de validación del modelo, un total de 65 personas revisó el modelo proporcionando su nivel de acuerdo con las dimensiones evaluadas y un total de 248 comentarios sobre cómo mejorar el modelo. Los conocimientos de los participantes variaban desde la ingeniería del software (70%) hasta las especialidades médicas (15%), con declarado interés en eHealth (24%), mHealth (16%), Ambient Assisted Living (21%), medicina personalizada (5%), sistemas basados en pHealth (15%), informática médica (10%) e ingeniería biomédica (8%) con una media de 7.25_4.99 años de experiencia en estas áreas. Los resultados de la encuesta muestran que los expertos contactados consideran el modelo fácil de leer (media de 1.89_0.79 siendo 1 el valor más favorable y 5 el peor), suficientemente abstracto (1.99_0.88) y formal (2.13_0.77), con una cobertura suficiente del dominio (2.26_0.95), útil para describir el dominio (2.02_0.7) y para generar sistemas más específicos (2_0.75). Los expertos también reportan un interés parcial en utilizar el modelo en su trabajo (2.48_0.91). Gracias a sus comentarios, el modelo fue mejorado y enriquecido con conceptos que faltaban, aunque no se pudo demonstrar su mejora en las dimensiones evaluadas, dada la composición diferente de personas en las tres rondas de evaluación. Desde el modelo, se generó una plataforma de desarrollo llamada \pHealth Patient Platform (pHPP)". La plataforma desarrollada incluye librerías, herramientas de programación y desarrollo, un tutorial y una aplicación de ejemplo. Se definieron cuatro módulos principales de la arquitectura: el Data Collection Engine, que permite abstraer las fuentes de datos como sensores o servicios externos, mapeando los datos a bases de datos u ontologías, y permitiendo interacción basada en eventos; el GUI Engine, que abstrae la interfaz de usuario en un modelo de interacción basado en mensajes; y el Rule Engine, que proporciona a los desarrolladores un medio simple para programar la lógica de la aplicación en forma de reglas \if-then". Después de que la plataforma pHPP fue utilizada durante 5 años en el proyecto HeartCycle, 5 desarrolladores fueron reunidos en un grupo de discusión para analizar y evaluar la plataforma. De estas evaluaciones se concluye que la plataforma fue diseñada para encajar las necesidades de los ingenieros que trabajan en la rama, permitiendo la separación de problemas entre las distintas especialidades, y simplificando algunas tareas de desarrollo como el manejo de datos y la interacción asíncrona. A pesar de ello, se encontraron algunos defectos a causa de la inmadurez de algunas tecnologías empleadas, y la ausencia de algunas herramientas específicas para el dominio como el procesado de datos o algunos protocolos de comunicación relacionados con la salud. Dentro del proyecto HeartCycle la plataforma fue utilizada para el desarrollo de la aplicación \Guided Exercise", un sistema TIC para la rehabilitación de pacientes que han sufrido un infarto del miocardio. El sistema fue testeado en un ensayo clínico randomizado en el cual a 55 pacientes se les dio el sistema para su uso por 21 semanas. De los resultados técnicos del ensayo se puede concluir que, a pesar de algunos errores menores prontamente corregidos durante el estudio, la plataforma es estable y fiable. Conclusiones La investigación llevada a cabo en esta Tesis y los resultados obtenidos proporcionan las respuestas a las tres preguntas de investigación que motivaron este trabajo: RQ1 Se ha desarrollado un modelo para representar el dominio de los sistemas personalizados de salud. La evaluación hecha por los expertos de la rama concluye que el modelo representa el dominio con precisión y con un balance apropiado entre abstracción y detalle. RQ2 Se ha desarrollado, con éxito, una plataforma de desarrollo basada en el modelo. RQ3 Se ha demostrado que la plataforma es capaz de ayudar a los desarrolladores en la creación de software pHealth complejos. Las ventajas de la plataforma han sido demostradas en el ámbito de un proyecto de gran escala, aunque el enfoque genérico adoptado indica que la plataforma podría ofrecer beneficios también en otros contextos. Los resultados de estas evaluaciones ofrecen indicios de que, ambos, el modelo y la plataforma serán buenos candidatos para poderse convertir en una referencia para futuros desarrollos de sistemas pHealth. ABSTRACT Background Europe is living in an unsustainable situation. The economic crisis has been reducing governments' economic resources since 2008 and threatening social and health systems, while the proportion of older people in the European population continues to increase so that it is foreseen that in 2050 there will be only two workers per retiree [54]. To this situation it should be added the rise, strongly related to age, of chronic diseases the burden of which has been estimated to be up to the 7% of a country's gross domestic product [51]. There is a need for a paradigm shift, the need for a new way of caring for people's health, shifting the focus from curing conditions that have arisen to a sustainable and effective approach with the emphasis on prevention. Some advocate the adoption of personalised health care (pHealth), a model where medical practices are tailored to the patient's unique life, from the detection of risk factors to the customization of treatments based on each individual's response [81]. Personalised health is often associated to the use of Information and Communications Technology (ICT), that, with its exponential development, offers interesting opportunities for improving healthcare. The shift towards pHealth is slowly taking place, both in research and in industry, but the change is not significant yet. Many barriers still exist related to economy, politics and culture, while others are purely technological, like the lack of interoperable information systems [199]. Though interoperability aspects are evolving, there is still the need of a reference design, especially tackling implementation and large scale deployment of pHealth systems. This thesis contributes to organizing the subject of ICT systems for personalised health into a reference model that allows for the creation of software development platforms to ease common development issues in the domain. Research questions RQ1 Is it possible to define a model, based on software engineering techniques, for representing the personalised health domain in an abstract and representative way? RQ2 Is it possible to build a development platform based on this model? RQ3 Does the development platform help developers create complex integrated pHealth systems? Methods As method for describing the model, the ISO/IEC/IEEE 42010 framework [25] is adopted for its generality and high level of abstraction. The model is specified in different parts: a conceptual model, which makes use of concept maps, for representing stakeholders, artefacts and shared information, and in scenarios and use cases for the representation of the functionalities of pHealth systems. The model was derived from literature analysis, including 7 industrial and scientific reports, 9 electronic standards, 10 conference proceedings papers, 37 journal papers, 25 websites and 5 books. Based on the reference model, requirements were drawn for building the development platform enriched with a set of requirements gathered in a survey run among 11 experienced engineers. For developing the platform, the continuous integration methodology [74] was adopted which allowed to perform automatic tests on a server and also to deploy packaged releases on a web site. As a validation methodology, a theory building framework for SW engineering was adopted from [181]. The framework, chosen as a guide to find evidence for justifying the research questions, imposed the creation of theories based on models and propositions to be validated within a scope. The validation of the model was conducted as an on-line survey in three validation rounds, encompassing a growing number of participants. The survey was submitted to 134 experts of the field and on some public channels like relevant mailing lists and social networks. Its objective was to assess the model's readability, its level of coverage of the domain and its potential usefulness in the design of actual, derived systems. The questionnaires included quantitative Likert scale questions and free text inputs for comments. The development platform was validated in two scopes. As a small-scale experiment, the platform was used in a 12 hours training session where 4 developers had to perform an exercise consisting in developing a set of typical pHealth use cases At the end of the session, a focus group was held to identify benefits and drawbacks of the platform. The second validation was held as a test-case study in a large scale research project called HeartCycle the aim of which was to develop a closed-loop disease management system for heart failure and coronary heart disease patients [160]. During this project three applications were developed by a team of programmers and designers. One of these applications was tested in a clinical trial with actual patients. At the end of the project, the team was interviewed in a focus group to assess the role the platform had within the project. Results For what regards the model that describes the pHealth domain, its conceptual part includes a description of the main roles and concerns of pHealth stakeholders, a model of the ICT artefacts that are commonly adopted and a model representing the typical data that need to be formalized among pHealth systems. The functional model includes a set of 18 scenarios, divided into assisted person's view, caregiver's view, developer's view, technology and services providers' view and authority's view, and a set of 52 Use Cases grouped in 6 categories: assisted person's activities, system reactions, caregiver's activities, user engagement, developer's activities and deployer's activities. For what concerns the validation of the model, a total of 65 people participated in the online survey providing their level of agreement in all the assessed dimensions and a total of 248 comments on how to improve and complete the model. Participants' background spanned from engineering and software development (70%) to medical specialities (15%), with declared interest in the fields of eHealth (24%), mHealth (16%), Ambient Assisted Living (21%), Personalized Medicine (5%), Personal Health Systems (15%), Medical Informatics (10%) and Biomedical Engineering (8%) with an average of 7.25_4.99 years of experience in these fields. From the analysis of the answers it is possible to observe that the contacted experts considered the model easily readable (average of 1.89_0.79 being 1 the most favourable scoring and 5 the worst), sufficiently abstract (1.99_0.88) and formal (2.13_0.77) for its purpose, with a sufficient coverage of the domain (2.26_0.95), useful for describing the domain (2.02_0.7) and for generating more specific systems (2_0.75) and they reported a partial interest in using the model in their job (2.48_0.91). Thanks to their comments, the model was improved and enriched with concepts that were missing at the beginning, nonetheless it was not possible to prove an improvement among the iterations, due to the diversity of the participants in the three rounds. From the model, a development platform for the pHealth domain was generated called pHealth Patient Platform (pHPP). The platform includes a set of libraries, programming and deployment tools, a tutorial and a sample application. The main four modules of the architecture are: the Data Collection Engine, which allows abstracting sources of information like sensors or external services, mapping data to databases and ontologies, and allowing event-based interaction and filtering, the GUI Engine, which abstracts the user interface in a message-like interaction model, the Workow Engine, which allows programming the application's user interaction ows with graphical workows, and the Rule Engine, which gives developers a simple means for programming the application's logic in the form of \if-then" rules. After the 5 years experience of HeartCycle, partially programmed with pHPP, 5 developers were joined in a focus group to discuss the advantages and drawbacks of the platform. The view that emerged from the training course and the focus group was that the platform is well-suited to the needs of the engineers working in the field, it allowed the separation of concerns among the different specialities and it simplified some common development tasks like data management and asynchronous interaction. Nevertheless, some deficiencies were pointed out in terms of a lack of maturity of some technological choices, and for the absence of some domain-specific tools, e.g. for data processing or for health-related communication protocols. Within HeartCycle, the platform was used to develop part of the Guided Exercise system, a composition of ICT tools for the physical rehabilitation of patients who suffered from myocardial infarction. The system developed using the platform was tested in a randomized controlled clinical trial, in which 55 patients used the system for 21 weeks. The technical results of this trial showed that the system was stable and reliable. Some minor bugs were detected, but these were promptly corrected using the platform. This shows that the platform, as well as facilitating the development task, can be successfully used to produce reliable software. Conclusions The research work carried out in developing this thesis provides responses to the three three research questions that were the motivation for the work. RQ1 A model was developed representing the domain of personalised health systems, and the assessment of experts in the field was that it represents the domain accurately, with an appropriate balance between abstraction and detail. RQ2 A development platform based on the model was successfully developed. RQ3 The platform has been shown to assist developers create complex pHealth software. This was demonstrated within the scope of one large-scale project, but the generic approach adopted provides indications that it would offer benefits more widely. The results of these evaluations provide indications that both the model and the platform are good candidates for being a reference for future pHealth developments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrical power distribution and commercialization scenario is evolving worldwide, and electricity companies, faced with the challenge of new information requirements, are demanding IT solutions to deal with the smart monitoring of power networks. Two main challenges arise from data management and smart monitoring of power networks: real-time data acquisition and big data processing over short time periods. We present a solution in the form of a system architecture that conveys real time issues and has the capacity for big data management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Following the processing and validation of JEFF-3.1 performed in 2006 and presented in ND2007, and as a consequence of the latest updated of this library (JEFF-3.1.2) in February 2012, a new processing and validation of JEFF-3.1.2 cross section library is presented in this paper. The processed library in ACE format at ten different temperatures was generated with NJOY-99.364 nuclear data processing system. In addition, NJOY-99 inputs are provided to generate PENDF, GENDF, MATXSR and BOXER formats. The library has undergone strict QA procedures, being compared with other available libraries (e.g. ENDF/B-VII.1) and processing codes as PREPRO-2000 codes. A set of 119 criticality benchmark experiments taken from ICSBEP-2010 has been used for validation purposes.