7 resultados para Autocatalytic kinetics

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of amorphization in crystalline SiO2 (α-quartz) under irradiation with swift heavy ions (O+1 at 4 MeV, O+4 at 13 MeV, F+2 at 5 MeV, F+4 at 15 MeV, Cl+3 at 10 MeV, Cl+4 at 20 MeV, Br+5 at 15 and 25 MeV and Br+8 at 40 MeV) has been analyzed in this work with an Avrami-type law and also with a recently developed cumulative approach (track-overlap model). This latter model assumes a track morphology consisting of an amorphous core (area σ) and a surrounding defective halo (area h), both being axially symmetric. The parameters of the two approaches which provide the best fit to the experimental data have been obtained as a function of the electronic stopping power Se. The extrapolation of the σ(Se) dependence yields a threshold value for amorphization, Sth ≈ 2.1 keV/nm; a second threshold is also observed around 4.1 keV/nm. We believe that this double-threshold effect could be related to the appearance of discontinuous tracks in the region between 2.1 and 4.1 keV/nm. For stopping power values around or below the lower threshold, where the ratio h/σ is large, the track-overlap model provides a much better fit than the Avrami function. Therefore, the data show that a right modeling of the amorphization kinetics needs to take into account the contribution of the defective track halo. Finally, a short comparative discussion with the kinetic laws obtained for elastic collision damage is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined the cross-section σ for color center generation under single Br ion impacts on amorphous SiO2. The evolution of the cross-sections, σ(E) and σ(Se), show an initial flat stage that we associate to atomic collision mechanisms. Above a certain threshold value (Se > 2 keV/nm), roughly coinciding with that reported for the onset of macroscopic disorder (compaction), σ shows a marked increase due to electronic processes. In this regime, a energetic cost of around 7.5 keV is necessary to create a non bridging oxygen hole center-E′ (NBOHC/E′) pair, whatever the input energy. The data appear consistent with a non-radiative decay of self-trapped excitons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental research and modelling in plasma atomic physics continue to be essential for providing basic understanding of many different topics relevant to high-energy-density plasmas. The Atomic Physics Group at the Institute of Nuclear Fusion has accumulated experience over the years in developing a collection of computational models and tools for determining the atomic energy structure, ionization balance and radiative properties of, mainly, inertial fusion and laser-produced plasmas in a variety of conditions. In this work, we discuss some of the latest advances and results of our research, with emphasis on inertial fusion and laboratory-astrophysical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has been performed to emphasize about the problem known as ?climate changes? occurring due to the greenhouse gases emissions (Carbon dioxide (CO2), Methane (CH4),Nitrogen oxides (NOx), Ozone (O3), Chlorofluorocarbons (artificial). Specially, the project will be focused on the CO2 emissions produced mainly from the fossil fuels burning in power plants and other kind of industrial processes. To understand how important the global is warming and therefore the climate change, both the increase of emissions and the evolution of those will be studied in this project drawing conclusions about its effect. The Kyoto Protocol, the most important agreement internationally, signed by a great majority of the industrialized and developed countries, which try to limit the CO2 emissions to the atmosphere, will be cited in this project. Taking into account the effects of global warming and applying the international legislation on emissions of greenhouse gases, a number of measures will be exposed, where the CO2 capture will be studied deeply. Three different kind of CO2 capture technologies will be studied, drawing the conclusion that the post-combustion capture, in particular by amine chemical absorption, is the most efficient one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study supported by the European Space Agency (ESA), in the context of its General Studies Programme, performed an investigation of the possible use of space for studies in pure and applied plasma physics, in areas not traditionally covered by ‘space plasma physics’. A set of experiments have been identified that can potentially provide access to new phenomena and to allow advances in several fields of plasma science. These experiments concern phenomena on a spatial scale (101–104 m) intermediate between what is achievable on the ground and the usual solar system plasma observations. Detailed feasibility studies have been performed for three experiments: active magnetic experiments, largescale discharges and long tether–plasma interactions. The perspectives opened by these experiments are discussed for magnetic reconnection, instabilities, MHD turbulence, atomic excited states kinetics, weakly ionized plasmas,plasma diagnostics, artificial auroras and atmospheric studies. The discussion is also supported by results of numerical simulations and estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Molybdenum-nitrogenase is responsible for most biological nitrogen fixation activity (BNF) in the biosphere. Due to its great agronomical importance, it has been the subject of profound genetic and biochemical studies. The Mo nitrogenase carries at its active site a unique iron-molybdenum cofactor (FeMoco) that consists of an inorganic 7 Fe, 1 Mo, 1 C, 9 S core coordinated to the organic acid homocitrate. Biosynthesis of FeMo-co occurs outside nitrogenase through a complex and highly regulated pathway involving proteins acting as molecular scaffolds, metallocluster carriers or enzymes that provide substrates in appropriate chemical forms. Specific expression regulatory factors tightly control the accumulation levels of all these other components. Insertion of FeMo-co into a P-cluster containing apo-NifDK polypeptide results in nitrogenase reconstitution. Investigation of FeMo-co biosynthesis has uncovered new radical chemistry reactions and new roles for Fe-S clusters in biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the first application of total-reflection X-ray fluorescence (TXRF) spectrometry, a new and powerful alternative analytical method, to evaluation of the bioaccumulation kinetics of gold nanorods (GNRs) in various tissues upon intravenous administration in mice. The analytical parameters for developed methodology by TXRF were evaluated by means of the parallel analysis of bovine liver certified reference material samples (BCR-185R) doped with 10 μg/g gold. The average values (n = 5) achieved for gold measurements in lyophilized tissue weight were as follows: recovery 99.7%, expanded uncertainty (k = 2) 7%, repeatability 1.7%, detection limit 112 ng/g, and quantification limit 370 ng/g. The GNR bioaccumulation kinetics was analyzed in several vital mammalian organs such as liver, spleen, brain, and lung at different times. Additionally, urine samples were analyzed to study the kinetics of elimination of the GNRs by this excretion route. The main achievement was clearly differentiating two kinds of behaviors. GNRs were quickly bioaccumulated by highly vascular filtration organs such as liver and spleen, while GNRs do not show a bioaccumulation rates in brain and lung for the period of time investigated. In parallel, urine also shows a lack of GNR accumulation. TXRF has proven to be a powerful, versatile, and precise analytical technique for the evaluation of GNRs content in biological systems and, in a more general way, for any kind of metallic nanoparticles.