6 resultados para Augmented Lagrangian method

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensusbased implementation of the algorithm is proposed based on an augmented Lagrangian approach and primaldual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation in real sensor networks, i.e., it is scalable, robust against node failures and requires only local communication among neighboring nodes. Simulation results show that running an additional local search around the found solution can yield performance close to the maximum likelihood estimate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a quasi-monotone semi-Lagrangian particle level set (QMSL-PLS) method for moving interfaces. The QMSL method is a blend of first order monotone and second order semi-Lagrangian methods. The QMSL-PLS method is easy to implement, efficient, and well adapted for unstructured, either simplicial or hexahedral, meshes. We prove that it is unconditionally stable in the maximum discrete norm, � · �h,∞, and the error analysis shows that when the level set solution u(t) is in the Sobolev space Wr+1,∞(D), r ≥ 0, the convergence in the maximum norm is of the form (KT/Δt)min(1,Δt � v �h,∞ /h)((1 − α)hp + hq), p = min(2, r + 1), and q = min(3, r + 1),where v is a velocity. This means that at high CFL numbers, that is, when Δt > h, the error is O( (1−α)hp+hq) Δt ), whereas at CFL numbers less than 1, the error is O((1 − α)hp−1 + hq−1)). We have tested our method with satisfactory results in benchmark problems such as the Zalesak’s slotted disk, the single vortex flow, and the rising bubble.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a "heuristic argument" that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages"). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a mobile-based system to interact with objects in smart spaces, where the offer of resources may be extensive. The underlying idea is to use the augmentation capabilities of the mobile device to enable it as user-object mediator. In particular, the paper details how to build an attitude-based reasoning strategy that facilitates user-object interaction and resource filtering. The strategy prioritizes the available resources depending on the spatial history of the user, his real-time location and orientation and, finally, his active touch and focus interactions with the virtual overlay. The proposed reasoning method has been partially validated through a prototype that handles 2D and 3D visualization interfaces. This framework makes possible to develop in practice the IoT paradigm, augmenting the objects without physically modifying them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we develop new techniques for revealing geometrical structures in phase space that are valid for aperiodically time dependent dynamical systems, which we refer to as Lagrangian descriptors. These quantities are based on the integration, for a finite time, along trajectories of an intrinsic bounded, positive geometrical and/or physical property of the trajectory itself. We discuss a general methodology for constructing Lagrangian descriptors, and we discuss a “heuristic argument” that explains why this method is successful for revealing geometrical structures in the phase space of a dynamical system. We support this argument by explicit calculations on a benchmark problem having a hyperbolic fixed point with stable and unstable manifolds that are known analytically. Several other benchmark examples are considered that allow us the assess the performance of Lagrangian descriptors in revealing invariant tori and regions of shear. Throughout the paper “side-by-side” comparisons of the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field (“time averages”) are carried out and discussed. In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods. We also perform computations for an explicitly three dimensional, aperiodically time-dependent vector field and an aperiodically time dependent vector field defined as a data set. Comparisons with FTLEs and time averages for these examples are also carried out, with similar conclusions as for the benchmark examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation a new numerical method for solving Fluid-Structure Interaction (FSI) problems in a Lagrangian framework is developed, where solids of different constitutive laws can suffer very large deformations and fluids are considered to be newtonian and incompressible. For that, we first introduce a meshless discretization based on local maximum-entropy interpolants. This allows to discretize a spatial domain with no need of tessellation, avoiding the mesh limitations. Later, the Stokes flow problem is studied. The Galerkin meshless method based on a max-ent scheme for this problem suffers from instabilities, and therefore stabilization techniques are discussed and analyzed. An unconditionally stable method is finally formulated based on a Douglas-Wang stabilization. Then, a Langrangian expression for fluid mechanics is derived. This allows us to establish a common framework for fluid and solid domains, such that interaction can be naturally accounted. The resulting equations are also in the need of stabilization, what is corrected with an analogous technique as for the Stokes problem. The fully Lagrangian framework for fluid/solid interaction is completed with simple point-to-point and point-to-surface contact algorithms. The method is finally validated, and some numerical examples show the potential scope of applications.