21 resultados para Atomic-sized contacts

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g−1. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g−1, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g−1). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 μg g−1) and generally high arsenate (As(V)) concentrations (up to 77 μg g−1) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the near-field concentration properties of dielectric spheroidal scatterers with sizes close to the wavelength, using an analytical separation-of-variables method. Such particles act as mesoscopic lenses whose physical parameters are optimized here for maximum scattered light enhancement in photovoltaic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key steps to achieve high efficiencies in amorphous/crystalline silicon photovoltaic structures is to design low-ohmic-resistance backcontacts with good passivation in the rear part of the cell. A well known approach to achieve this goal is to use laser-fired contact (LFC) processes in which a metal layer is fired through the dielectric to define good contacts with the semiconductor. However, and despite the fact that this approach has demonstrated to be extremely successful, there is still enough room for process improvement with an appropriate optimization. In this paper, a study focused on the optimal adjustment of the irradiation parameters to produce laser-fired contacts in a-Si:H/c-Si heterojunctionsolarcells is presented. We used samples consisting of crystalline-silicon (c-Si) wafers together with a passivation layer of intrinsic hydrogenated amorphous silicon (a-Si:H(i)) deposited by plasma-enhanced chemical deposition (PECVD). Then, an aluminum layer was evaporated on both sides, the thickness of this layer varied from 0.2 to 1 μm in order to identify the optimal amount of Al required to create an appropriate contact. A q-switched Nd:YVO4laser source, λ = 532 nm, was used to locally fire the aluminum through the thin a-Si:H(i)-layers to form the LFC. The effects of laser fluences were analyzed using a comprehensive morphological and electrical characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Laser-Fired Contact (LFC) process, a laser beam fires a metallic layer through a dielectric passivating layer into the silicon wafer to form an electrical contact with the silicon bulk [1]. This laser technique is an interesting alternative for the fabrication of both laboratory and industrial scale high efficiency passivated emitter and rear cell (PERC). One of the principal characteristics of this promising technique is the capability to reduce the recombination losses at the rear surface in crystalline silicon solar cells. Therefore, it is crucial to optimize LFC because this process is one of the most promising concepts to produce rear side point contacts at process speeds compatible with the final industrial application. In that sense, this work investigates the optimization of LFC processing to improve the back contact in silicon solar cells using fully commercial solid state lasers with pulse width in the ns range, thus studying the influence of the wavelength using the three first harmonics (corresponding to wavelengths of 1064 nm, 532 nm and 355 nm). Previous studies of our group focused their attention in other processing parameters as laser fluence, number of pulses, passivating material [2, 3] thickness of the rear metallic contact [4], etc. In addition, the present work completes the parametric optimization by assessing the influence of the laser wavelength on the contact property. In particular we report results on the morphology and electrical behaviour of samples specifically designed to assess the quality of the process. In order to study the influence of the laser wavelength on the contact feature we used as figure of merit the specific contact resistance. In all processes the best results have been obtained using green (532 nm) and UV (355 nm), with excellent values for this magnitude far below 1 mΩcm2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two concurrent semantics (i.e. semantics where concurrency is explicitely represented) for CC programs with atomic tells. One is based on simple partial orders of computation steps, while the other one is based on contextual nets and it is an extensión of a previous one for eventual CC programs. Both such semantics allow us to derive concurrency, dependency, and nondeterminism information for the considered languages. We prove some properties about the relation between the two semantics, and also about the relation between them and the operational semantics. Moreover, we discuss how to use the contextual net semantics in the context of CLP programs. More precisely, by interpreting concurrency as possible parallelism, our semantics can be useful for a safe parallelization of some CLP computation steps. Dually, the dependency information may also be interpreted as necessary sequentialization, thus possibly exploiting it for the task of scheduling CC programs. Moreover, our semantics is also suitable for CC programs with a new kind of atomic tell (called locally atomic tell), which checks for consistency only the constraints it depends on. Such a tell achieves a reasonable trade-off between efficiency and atomicity, since the checked constraints can be stored in a local memory and are thus easily accessible even in a distributed implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a concurrent semantics (i.e. a semantics where concurrency is explicitely represented) for CC programs with atomic tells. This allows to derive concurrency, dependency, and nondeterminism information for such languages. The ability to treat failure information puts CLP programs also in the range of applicability of our semantics: although such programs are not concurrent, the concurrency information derived in the semantics may be interpreted as possible parallelism, thus allowing to safely parallelize those computation steps which appear to be concurrent in the net. Dually, the dependency information may also be interpreted as necessary sequentialization, thus possibly exploiting it to schedule CC programs. The fact that the semantical structure contains dependency information suggests a new tell operation, which checks for consistency only the constraints it depends on, achieving a reasonable trade-off between efficiency and atomicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Massive integration of renewable energy sources in electrical power systems of remote islands is a subject of current interest. The increasing cost of fossil fuels, transport costs to isolated sites and environmental concerns constitute a serious drawback to the use of conventional fossil fuel plants. In a weak electrical grid, as it is typical on an island, if a large amount of conventional generation is substituted by renewable energy sources, power system safety and stability can be compromised, in the case of large grid disturbances. In this work, a model for transient stability analysis of an isolated electrical grid exclusively fed from a combination of renewable energy sources has been studied. This new generation model will be installed in El Hierro Island, in Spain. Additionally, an operation strategy to coordinate the generation units (wind, hydro) is also established. Attention is given to the assessment of inertial energy and reactive current to guarantee power system stability against large disturbances. The effectiveness of the proposed strategy is shown by means of simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of GaAsSbN capping layers on InAs/GaAs quantum dots (QDs) has recently been proposed for micro- and optoelectronic applications for their ability to independently tailor electron and hole confinement potentials. However, there is a lack of knowledge about the structural and compositional changes associated with the process of simultaneous Sb and N incorporation. In the present work, we have characterized using transmission electron microscopy techniques the effects of adding N in the GaAsSb/InAs/GaAs QD system. Firstly, strain maps of the regions away from the InAs QDs had revealed a huge reduction of the strain fields with the N incorporation but a higher inhomogeneity, which points to a composition modulation enhancement with the presence of Sb-rich and Sb-poor regions in the range of a few nanometers. On the other hand, the average strain in the QDs and surroundings is also similar in both cases. It could be explained by the accumulation of Sb above the QDs, compensating the tensile strain induced by the N incorporation together with an In-Ga intermixing inhibition. Indeed, compositional maps of column resolution from aberration-corrected Z-contrast images confirmed that the addition of N enhances the preferential deposition of Sb above the InAs QD, giving rise to an undulation of the growth front. As an outcome, the strong redshift in the photoluminescence spectrum of the GaAsSbN sample cannot be attributed only to the N-related reduction of the conduction band offset but also to an enhancement of the effect of Sb on the QD band structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomic environments of Fe and Co involved in the magnetostriction effect in FeCoB alloys have been identified by differential extended x-ray fine structure (DiffEXAFS) spectroscopy. The study, done in amorphous and polycrystalline FeCoB films, demonstrates that the alloys are heterogeneous and that boron plays a crucial role in the origin of their magnetostrictive properties. The analysis of DiffEXAFS in the polycrystalline and amorphous alloys indicates that boron activates magnetostriction when entering as an impurity into octahedral interstitial sites of the Fe bcc lattice, causing its tetragonal distortion. Magnetostriction would be explained then by the relative change in volume when the tetragonal axis of the site is reoriented under an externally applied magnetic field. The experiment demonstrates the extreme sensitivity of DiffEXAFS to characterize magnetostrictive environments that are undetectable in their related EXAFS spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report on the study of nano-crack formation in Al1−xInxN/AlN/GaN heterostructures, on its association with composition fluctuation and on its local electrical properties. It is shown here that indium segregation at nano-cracks and threading dislocations originating from the non-pseudomorphic AlN interlayer could be the cause of the high reverse-bias gate leakage current of Ni/Au Schottky contacts on Al1−xInxN/AlN/GaN heterostructures and significantly affects the contact rectifying behavior. Segregation of indium around crack tips in Al1−xInxN acting as conductive paths was assessed with conductive atomic force microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Atomic Physics Group at the Institute of Nuclear Fusion (DENIM) in Spain has accumulated experience over the years in developing a collection of computational models and tools for determining some relevant microscopic properties of, mainly, ICF and laser-produced plasmas in a variety of conditions. In this work several applications of those models in determining some relevant microscopic properties are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct optical modulation at 2.5 Gb/s with amplitude of more than 0.5 W has been demonstrated in single longitudinal mode distributed Bragg reflector tapered lasers emitting at 1060 nm with separated injection of the ridge waveguide and tapered sections. The modulating signal of ~110 mA peak to peak was applied to the ridge waveguide section, yielding a high modulation efficiency of ~5 W/A. The large-signal frequency response of the experimental set-up was limited by the bandwidth of the electrical amplifier rather than by the internal dynamics of the laser, indicating that higher bit rates could be achieved with improved driving electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel general resource analysis for logic programs based on sized types.Sized types are representations that incorporate structural (shape) information and allow expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. They also allow relating the sizes of terms and subterms occurring at different argument positions in logic predicates. Using these sized types, the resource analysis can infer both lower and upper bounds on the resources used by all the procedures in a program as functions on input term (and subterm) sizes, overcoming limitations of existing analyses and enhancing their precision. Our new resource analysis has been developed within the abstract interpretation framework, as an extension of the sized types abstract domain, and has been integrated into the Ciao preprocessor, CiaoPP. The abstract domain operations are integrated with the setting up and solving of recurrence equations for both, inferring size and resource usage functions. We show that the analysis is an improvement over the previous resource analysis present in CiaoPP and compares well in power to state of the art systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel analysis for relating the sizes of terms and subterms occurring at diferent argument positions in logic predicates. We extend and enrich the concept of sized type as a representation that incorporates structural (shape) information and allows expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. For example, expressing bounds on the length of lists of numbers, together with bounds on the values of all of their elements. The analysis is developed using abstract interpretation and the novel abstract operations are based on setting up and solving recurrence relations between sized types. It has been integrated, together with novel resource usage and cardinality analyses, in the abstract interpretation framework in the Ciao preprocessor, CiaoPP, in order to assess both the accuracy of the new size analysis and its usefulness in the resource usage estimation application. We show that the proposed sized types are a substantial improvement over the previous size analyses present in CiaoPP, and also benefit the resource analysis considerably, allowing the inference of equal or better bounds than comparable state of the art systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel general resource analysis for logic programs based on sized types. Sized types are representations that incorporate structural (shape) information and allow expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. They also allow relating the sizes of terms and subterms occurring at different argument positions in logic predicates. Using these sized types, the resource analysis can infer both lower and upper bounds on the resources used by all the procedures in a program as functions on input term (and subterm) sizes, overcoming limitations of existing resource analyses and enhancing their precision. Our new resource analysis has been developed within the abstract interpretation framework, as an extension of the sized types abstract domain, and has been integrated into the Ciao preprocessor, CiaoPP. The abstract domain operations are integrated with the setting up and solving of recurrence equations for inferring both size and resource usage functions. We show that the analysis is an improvement over the previous resource analysis present in CiaoPP and compares well in power to state of the art systems.