8 resultados para Asteroid sitzmarks
em Universidad Politécnica de Madrid
Resumo:
We present analytical formulas to estimate the variation of achieved deflection for an Earth-impacting asteroid following a continuous tangential low-thrust deflection strategy. Relatively simple analytical expressions are obtained with the aid of asymptotic theory and the use of Peláez orbital elements set, an approach that is particularly suitable to the asteroid deflection problem and is not limited to small eccentricities. The accuracy of the proposed formulas is evaluated numerically showing negligible error for both early and late deflection campaigns. The results will be of aid in planning future low-thrust asteroid deflection missions
Resumo:
There is evidence of past Near-Earth-Objects (NEOs) impacts on Earth and several studies indicating that even relatively small objects are capable of causing large local damage, either directly or in combination with other phenomena, e.g. tsunamis. This paper describes a space mission concept to demonstrate some of the key technologies to rendezvous with an asteroid and accurately measure its trajectory during and after a deflection maneuver. The mission, called SIROCO, makes use of the recently proposed ion beam shepherd (IBS) concept where a stream of accelerated plasma ions is directed against the surface of a small NEO resulting in a net transmitted deflection force. We show that by carefully selecting the target NEO a measurable deflection can be obtained in a few weeks of continuous thrust with a small spacecraft and state of the art electric propulsion hardware.
Resumo:
A novel slow push asteroid deflection strategy has been recently proposed in which an Earth threatening asteroid can be deflected by exploiting the momentum transmitted by a collimated beam of quasi-neutral plasma impinging against the asteroid surface. The beam can be generated with state-of-the art ion engines from a hovering spacecraft with no need for physical attachment or gravitational interaction with the celestial body. The spacecraft, placed at a distance of a few asteroid diameters, would need an ion thruster pointed at the asteroid surface as well as a second propulsion system to compensate for the ion engine reaction and keep the distance between the asteroid and the shepherd satellite constant throughout the deflection phase. A comparison in terms of required spacecraft mass per total imparted deflection impulse shows that the method outperforms the gravity tractor concept by more than one order of magnitude for asteroids up to about 200 m diameter. The two methods would yield comparable performance for asteroids larger than about 2 km
Resumo:
To calculate the force associated with the Yarkovsky effect the temperature distribution on the surface of the asteroid should be determined; it depends on the asteroid orbit, size and shape, spin axis orientation and period, mass, density of surface layers, albedo, thermal conductivity, capacity and IR emissivity of the material. The uncertainty of many of these parameters invites to develop simplified methods to calculate the influence of the Yarkovsky effect on long term dynamics of asteroids. In this paper we present one of this method based in a special perturbation procedure developed in our group.
Resumo:
This project investigates the utility of differential algebra (DA) techniques applied to the problem of orbital dynamics with initial uncertainties in the orbital determination of the involved bodies. The use of DA theory allows the splitting of a common Monte Carlo simulation in two parts: the generation of a Taylor map of the final states with regard to the perturbation in the initial coordinates, and the evaluation of the map for many points. A propagator is implemented exploiting DA techniques, and tested in the field of asteroid impact risk monitoring with the potentially hazardous 2011 AG5 and 2007 VK184 as test cases. Results show that the new method is able to simulate 2.5 million trajectories with a precision good enough for the impact probability to be accurately reproduced, while running much faster than a traditional Monte Carlo approach (in 1 and 2 days, respectively).
Resumo:
The possibility of capturing a small Near Earth Asteroid (NEA) and deliver it to the vicinity of the Earth has been recently explored by different authors. The key advantage would be to allow a cheap and quick access to the NEA for science, resource utilization and other purposes. Among the different challenges related to this operation stands the difficulty of robotically capturing the object, whose composition and dynamical state could be problematic. In order to simplify the capture operation we propose the use of a collimated ion beam ejected from a hovering spacecraft in order to maneuver the object without direct physical contact. The feasibility of a possible asteroid retrieval mission is evaluated.
Resumo:
Motivado por los últimos hallazgos realizados gracias a los recientes avances tecnológicos y misiones espaciales, el estudio de los asteroides ha despertado el interés de la comunidad científica. Tal es así que las misiones a asteroides han proliferado en los últimos años (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) incentivadas por su enorme interés científico. Los asteroides son constituyentes fundamentales en la evolución del Sistema Solar, son además grandes concentraciones de valiosos recursos naturales, y también pueden considerarse como objectivos estratégicos para la futura exploración espacial. Desde hace tiempo se viene especulando con la posibilidad de capturar objetos próximos a la Tierra (NEOs en su acrónimo anglosajón) y acercarlos a nuestro planeta, permitiendo así un acceso asequible a los mismos para estudiarlos in-situ, explotar sus recursos u otras finalidades. Por otro lado, las asteroides se consideran con frecuencia como posibles peligros de magnitud planetaria, ya que impactos de estos objetos con la Tierra suceden constantemente, y un asteroide suficientemente grande podría desencadenar eventos catastróficos. Pese a la gravedad de tales acontecimientos, lo cierto es que son ciertamente difíciles de predecir. De hecho, los ricos aspectos dinámicos de los asteroides, su modelado complejo y las incertidumbres observaciones hacen que predecir su posición futura con la precisión necesaria sea todo un reto. Este hecho se hace más relevante cuando los asteroides sufren encuentros próximos con la Tierra, y más aún cuando estos son recurrentes. En tales situaciones en las cuales fuera necesario tomar medidas para mitigar este tipo de riesgos, saber estimar con precisión sus trayectorias y probabilidades de colisión es de una importancia vital. Por ello, se necesitan herramientas avanzadas para modelar su dinámica y predecir sus órbitas con precisión, y son también necesarios nuevos conceptos tecnológicos para manipular sus órbitas llegado el caso. El objetivo de esta Tesis es proporcionar nuevos métodos, técnicas y soluciones para abordar estos retos. Las contribuciones de esta Tesis se engloban en dos áreas: una dedicada a la propagación numérica de asteroides, y otra a conceptos de deflexión y captura de asteroides. Por lo tanto, la primera parte de este documento presenta novedosos avances de apliación a la propagación dinámica de alta precisión de NEOs empleando métodos de regularización y perturbaciones, con especial énfasis en el método DROMO, mientras que la segunda parte expone ideas innovadoras para la captura de asteroides y comenta el uso del “ion beam shepherd” (IBS) como tecnología para deflectarlos. Abstract Driven by the latest discoveries enabled by recent technological advances and space missions, the study of asteroids has awakened the interest of the scientific community. In fact, asteroid missions have become very popular in the recent years (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) motivated by their outstanding scientific interest. Asteroids are fundamental constituents in the evolution of the Solar System, can be seen as vast concentrations of valuable natural resources, and are also considered as strategic targets for the future of space exploration. For long it has been hypothesized with the possibility of capturing small near-Earth asteroids and delivering them to the vicinity of the Earth in order to allow an affordable access to them for in-situ science, resource utilization and other purposes. On the other side of the balance, asteroids are often seen as potential planetary hazards, since impacts with the Earth happen all the time, and eventually an asteroid large enough could trigger catastrophic events. In spite of the severity of such occurrences, they are also utterly hard to predict. In fact, the rich dynamical aspects of asteroids, their complex modeling and observational uncertainties make exceptionally challenging to predict their future position accurately enough. This becomes particularly relevant when asteroids exhibit close encounters with the Earth, and more so when these happen recurrently. In such situations, where mitigation measures may need to be taken, it is of paramount importance to be able to accurately estimate their trajectories and collision probabilities. As a consequence, advanced tools are needed to model their dynamics and accurately predict their orbits, as well as new technological concepts to manipulate their orbits if necessary. The goal of this Thesis is to provide new methods, techniques and solutions to address these challenges. The contributions of this Thesis fall into two areas: one devoted to the numerical propagation of asteroids, and another to asteroid deflection and capture concepts. Hence, the first part of the dissertation presents novel advances applicable to the high accuracy dynamical propagation of near-Earth asteroids using regularization and perturbations techniques, with a special emphasis in the DROMO method, whereas the second part exposes pioneering ideas for asteroid retrieval missions and discusses the use of an “ion beam shepherd” (IBS) for asteroid deflection purposes.
Resumo:
The singularities in Dromo are characterized in this paper, both from an analytical and a numerical perspective. When the angular momentum vanishes, Dromo may encounter a singularity in the evolution equations. The cancellation of the angular momentum occurs in very speci?c situations and may be caused by the action of strong perturbations. The gravitational attraction of a perturbing planet may lead to rapid changes in the angular momentum of the particle. In practice, this situation may be encountered during deep planetocentric ?ybys. The performance of Dromo is evaluated in di?erent scenarios. First, Dromo is validated for integrating the orbit of Near Earth Asteroids. Resulting errors are of the order of the diameter of the asteroid. Second, a set of theoretical ?ybys are designed for analyzing the performance of the formulation in the vicinity of the singularity. New sets of Dromo variables are proposed in order to minimize the dependency of Dromo on the angular momentum. A slower time scale is introduced, leading to a more stable description of the ?yby phase. Improvements in the overall performance of the algorithm are observed when integrating orbits close to the singularity.