4 resultados para Archiving
em Universidad Politécnica de Madrid
Resumo:
EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC [1] (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS [2] (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 [3] and [4] (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution is presented, together with the most relevant results of the tests performed, while focusing in the benefits and limitations of the applied technologies.
Resumo:
This research is concerned with the experimental software engineering area, specifically experiment replication. Replication has traditionally been viewed as a complex task in software engineering. This is possibly due to the present immaturity of the experimental paradigm applied to software development. Researchers usually use replication packages to replicate an experiment. However, replication packages are not the solution to all the information management problems that crop up when successive replications of an experiment accumulate. This research borrows ideas from the software configuration management and software product line paradigms to support the replication process. We believe that configuration management can help to manage and administer information from one replication to another: hypotheses, designs, data analysis, etc. The software product line paradigm can help to organize and manage any changes introduced into the experiment by each replication. We expect the union of the two paradigms in replication to improve the planning, design and execution of further replications and their alignment with existing replications. Additionally, this research work will contribute a web support environment for archiving information related to different experiment replications. Additionally, it will provide flexible enough information management support for running replications with different numbers and types of changes. Finally, it will afford massive storage of data from different replications. Experimenters working collaboratively on the same experiment must all have access to the different experiments.
Resumo:
BACKGROUND: Clinical Trials (CTs) are essential for bridging the gap between experimental research on new drugs and their clinical application. Just like CTs for traditional drugs and biologics have helped accelerate the translation of biomedical findings into medical practice, CTs for nanodrugs and nanodevices could advance novel nanomaterials as agents for diagnosis and therapy. Although there is publicly available information about nanomedicine-related CTs, the online archiving of this information is carried out without adhering to criteria that discriminate between studies involving nanomaterials or nanotechnology-based processes (nano), and CTs that do not involve nanotechnology (non-nano). Finding out whether nanodrugs and nanodevices were involved in a study from CT summaries alone is a challenging task. At the time of writing, CTs archived in the well-known online registry ClinicalTrials.gov are not easily told apart as to whether they are nano or non-nano CTs-even when performed by domain experts, due to the lack of both a common definition for nanotechnology and of standards for reporting nanomedical experiments and results. METHODS: We propose a supervised learning approach for classifying CT summaries from ClinicalTrials.gov according to whether they fall into the nano or the non-nano categories. Our method involves several stages: i) extraction and manual annotation of CTs as nano vs. non-nano, ii) pre-processing and automatic classification, and iii) performance evaluation using several state-of-the-art classifiers under different transformations of the original dataset. RESULTS AND CONCLUSIONS: The performance of the best automated classifier closely matches that of experts (AUC over 0.95), suggesting that it is feasible to automatically detect the presence of nanotechnology products in CT summaries with a high degree of accuracy. This can significantly speed up the process of finding whether reports on ClinicalTrials.gov might be relevant to a particular nanoparticle or nanodevice, which is essential to discover any precedents for nanotoxicity events or advantages for targeted drug therapy.
Resumo:
A methodology is presented to determine both the short-term and the long-term influence of the spectral variations on the performance of Multi-Junction (MJ) solar cells and Concentrating "This is the peer reviewed version of the following article: R. Núñez, C. Domínguez, S. Askins, M. Victoria, R. Herrero, I. Antón, and G. Sala, “Determination of spectral variations by means of component cells useful for CPV rating and design,” Prog. Photovolt: Res. Appl., 2015., which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/pip.2715/full. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving [http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms]." Photovoltaic (CPV) modules. Component cells with the same optical behavior as MJ solar cells are used to characterize the spectrum. A set of parameters, namely Spectral Matching Ratios (SMRs), is used to characterize spectrally a particular Direct Normal Irradiance (DNI) by comparison to the reference spectrum (AM1.5D-ASTM-G173-03). Furthermore, the spectrally corrected DNI for a given MJ solar cell technology is defined providing a way to estimate the losses associated to the spectral variations. The last section analyzes how the spectrum evolves throughout a year in a given place and the set of SMRs representative for that location are calculated. This information can be used to maximize the energy harvested by the MJ solar cell throughout the year. As an example, three years of data recorded in Madrid shows that losses lower than 5% are expected due to current mismatch for state-of-the-art MJ solar cells.