44 resultados para Architecture and solar radiation Queensland
em Universidad Politécnica de Madrid
Resumo:
The solaR package allows for reproducible research both for photovoltaics (PV) systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems. It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems. Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.
Resumo:
The analytical solution to the one-dimensional absorption–conduction heat transfer problem inside a single glass pane is presented, which correctly takes into account all the relevant physical phenomena: the appearance of multiple reflections, the spectral distribution of solar radiation, the spectral dependence of optical properties, the presence of possible coatings, the non-uniform nature of radiation absorption, and the diffusion of heat by conduction across the glass pane. Additionally to the well established and known direct absorptance αe, the derived solution introduces a new spectral quantity called direct absorptance moment βe, that indicates where in the glass pane is the absorption of radiation actually taking place. The theoretical and numerical comparison of the derived solution with existing approximate thermal models for the absorption–conduction problem reveals that the latter ones work best for low-absorbing uncoated single glass panes, something not necessarily fulfilled by modern glazings.
Resumo:
Solar Decathlon Europe is an international competition among universities which promotes interdisciplinary learning in engineering and architecture. Students from different disciplines participate in teams guided by several professors during a 29 month preparation period plus five weeks of on-site contest. The educational project involves designing, building and testing a solar energy house connected to the electrical grid with the strategy of maximizing self-consumption, supported by bioclimatic technologies and maintaining a low environmental footprint. It culminates in a on-site contest in which teams must assembly the house themselves, test it with ordinary real life tasks and finally disassembly it. The event has also a divulgative aim, trying to make students and visitors get interested in discovering the problems presented by real engineering and architecture applications. In addition, SDE covers R&D aspects in different fields such as energy efficiency, solar energy and bioclimatic architecture. This article presents the methodology followed during the SDE 2012 edition, in which more than 850 students participated. The obtained results show that the educational competition was a success according to the technical and professional ambitions of the students, most of them considering that their knowledge had increased in areas related to technical and multidisciplinary aspects.
Resumo:
This work is a preliminary studio of the possibility of assess a relationship between solar radiation and watercore development on apple fruit, during maturation, using a non destructive method such as Magnetic Resonance Imaging (MRI). For such purpose, several low cost solar radiation sensors were designed for the trial and placed at 2 different heights (1.5 and 2.5 m) on 6 adult ?Esperiega? apple trees, in a commercial orchard in Ademuz (Valencia). Sensors were connected along 27 days, during the end of the growth period and start of the fruit maturation process, and radiation measurements of the a-Si sensors were recorded every 1 minute. At the end of this period, fruits from the upper and the lower part of the canopy of each tree were harvested. In all, 152 apples were collected and images with MRI. A Principal Component Analysis, perfomed over the histograms of the images, as well as segmentation methods were performed on the MR images in order to find a pattern involving solar radiation and watercore incidence.
Resumo:
Solar radiation is the most important source of renewable energy in the planet; it's important to solar engineers, designers and architects, and it's also fundamental for efficiently determining irrigation water needs and potential yield of crops, among others. Complete and accurate solar radiation data at a specific region are indispensable. For locations where measured values are not available, several models have been developed to estimate solar radiation. The objective of this paper was to calibrate, validate and compare five representative models to predict global solar radiation, adjusting the empirical coefficients to increase the local applicability and to develop a linear model. All models were based on easily available meteorological variables, without sunshine hours as input, and were used to estimate the daily solar radiation at Cañada de Luque (Córdoba, Argentina). As validation, measured and estimated solar radiation data were analyzed using several statistic coefficients. The results showed that all the analyzed models were robust and accurate (R2 and RMSE values between 0.87 to 0.89 and 2.05 to 2.14, respectively), so global radiation can be estimated properly with easily available meteorological variables when only temperature data are available. Hargreaves-Samani, Allen and Bristow-Campbell models could be used with typical values to estimate solar radiation while Samani and Almorox models should be applied with calibrated coefficients. Although a new linear model presented the smallest R2 value (R2 = 0.87), it could be considered useful for its easy application. The daily global solar radiation values produced for these models can be used to estimate missing daily values, when only temperature data are available, and in hydrologic or agricultural applications.
Resumo:
The first wall armour for the reactor chamber of HiPER will have to face short energy pulses of 5 to 20 MJ mostly in the form of x-rays and charged particles at a repetition rate of 5–10 Hz. Armour material and chamber dimensions have to be chosen to avoid/minimize damage to the chamber, ensuring the proper functioning of the facility during its planned lifetime. The maximum energy fluence that the armour can withstand without risk of failure, is determined by temporal and spatial deposition of the radiation energy inside the material. In this paper, simulations on the thermal effect of the radiation–armour interaction are carried out with an increasing definition of the temporal and spatial deposition of energy to prove their influence on the final results. These calculations will lead us to present the first values of the thermo-mechanical behaviour of the tungsten armour designed for the HiPER project under a shock ignition target of 48 MJ. The results will show that only the crossing of the plasticity limit in the first few micrometres might be a threat after thousands of shots for the survivability of the armour.
Resumo:
1) Introduction 2) The Quasi-mono, pseudo-mono, mono-like ERA. 3) Manufacturing mono-cast ingots: COST (seed recycling) 4) Summary and findings 5) Current status at DCWafers
Resumo:
III-nitride nanorods have attracted much scientific interest during the last decade because of their unique optical and electrical properties [1,2]. The high crystal quality and the absence of extended defects make them ideal candidates for the fabrication of high efficiency opto-electronic devices such as nano-photodetectors, light-emitting diodes, and solar cells [1-3]. Nitride nanorods are commonly grown in the self-assembled mode by plasma-assisted molecular beam epitaxy (MBE) [4]. However, self-assembled nanorods are characterized by inhomogeneous heights and diameters, which render the device processing very difficult and negatively affect the electronic transport properties of the final device. For this reason, the selective area growth (SAG) mode has been proposed, where the nanorods preferentially grow with high order on pre-defined sites on a pre-patterned substrate
Resumo:
IBPOWER is a Project awarded under the 7th European Framework Programme that aims to advance research on intermediate band solar cells (IBSCs). These are solar cells conceived to absorb below bandgap energy photons by means of an electronic energy band that is located within the semiconductor bandgap, whilst producing photocurrent with output voltage still limited by the total semiconductor bandgap. IBPOWER employs two basic strategies for implementing the IBSC concept. The first is based on the use of quantum dots, the IB arising from the confined energy levels of the electrons in the dots. Quantum dots have led to devices that demonstrate the physical operation principles of the IB concept and have allowed identification of the problems to be solved to achieve actual high efficiencies. The second approach is based on the creation of bulk intermediate band materials by the insertion of an appropriate impurity into a bulk semiconductor. Under this approach it is expected that, when inserted at high densities, these impurities will find it difficult to capture electrons by producing a breathing mode and will cease behaving as non-radiative recombination centres. Towards this end the following systems are being investigated: a) Mn: In1-xGax N; b) transition metals in GaAs and c) thin films.
Resumo:
Ponencia en el congreso internacional RESTAPIA 2012 que recoge los resultados de los trabajos de investigación realizados en el yacimiento arqueológico colonial de Piura la Vieja, La Matanza (Piura, Perú).
Resumo:
Ponencia presentada en el congreso internacional organizado por el Comité Internacional de Arquitectura Vernácula de ICOMOS - UNESCO.
Resumo:
In this work we present the results and analysis of a 10 MeV proton irradiation experiment performed on III-V semiconductor materials and solar cells. A set of representative devices including lattice-matched InGaP/GaInAs/Ge triple junction solar cells and single junction GaAs and InGaP component solar cells and a Ge diode were irradiated for different doses. The devices were studied in-situ before and after each exposure at dark and 1 sun AM0 illumination conditions, using a solar simulator connected to the irradiation chamber through a borosilicate glass window. Ex-situ characterization techniques included dark and 1 sun AM0 illumination I-V measurements. Furthermore, numerical simulation of the devices using D-AMPS-1D code together with calculations based on the TRIM software were performed in order to gain physical insight on the experimental results. The experiment also included the proton irradiation of an unprocessed Ge solar cell structure as well as the irradiation of a bare Ge(100) substrate. Ex-situ material characterization, after radioactive deactivation of the samples, includes Raman spectroscopy and spectral reflectivity.
Resumo:
Preface
Resumo:
In this article, I will research this topic from these aspects: the material, architectural forms, building technology and space experience, hoping to figure out the characteristic of traditional Chinese architecture and the use of low technology in it, explore a suitable path of the development of Chinese Vernacular Architecture.
Resumo:
From its humble beginnings as a small workshop established by Tomáš Baťa in 1874, the Bata Shoe Company became a gigantic concern in the 1920s, built on the principles of scientific management and welfare capitalism. The growth of the company engulfed Zlín (in today’s Czech Republic), its hometown, and transformed it into a modern industrial garden city satisfying the needs of both a growing industrial population, and those of the company itself. As a reaction to the aftermath of the crisis of 1929, the enterprise began a strategy of decentralization and international expansion characterized by the design and construction of a series of modern industrial towns that replicated the model of Zlín around the globe. This study is an exhaustive survey of these cities, their rationale, design, and their postindustrial conditions; it is a comparative work that has used field trips, photography, interviews, and archival material to explain the logics behind Bata’s project, to document the design and implementation of the model to multiple contexts and geographies, and to evaluate of the urban legacy of this undertaking. Finally, the research explores the question of what can the design disciplines, and other parties involved, learn from a full synthesis on the history and urbanism of the Bata satellite cities with regard to the re-imagination and sustainability of contemporary industry-sponsored interventions in developing geographies. RESUMEN Con origen en un humilde y pequeño taller fundado en 1874 por Tomáš Baťa, la Bata Shoe Company creció hasta convertirse en una gigantesca empresa en los anos 20, fundada en principios de control científico de la producción y capitalismo de bienestar. El crecimiento de la compañía se extendió por Zlín (en la actual República Checa), su pueblo de nacimiento, y la transformó en una moderna ciudad jardín industrial capaz de satisfacer las necesidades tanto de una población en alza como de la propia empresa. Como reacción a la crisis de 1929, Bata inició una estrategia de descentralización y expansión internacional caracterizada por el proyecto y construcción de modernas ciudades industriales que replicaron el modelo de Zlín por el mundo. Esta tesis es un estudio exhaustivo de estas ciudades: las razones detrás del proyecto, su diseño, y su condición post-industrial; es un estudio comparativo que se ha servido de trabajo de campo, documentación fotográfica, entrevistas y materiales de archivo para explicar la lógica detrás del proyecto de Bata, documentar el diseño e implementación de tal modelo en múltiples contextos y geografías, y valorar el legado urbano de esta empresa. Finalmente, la investigación evalúa qué podrían aprender las disciplinas del diseño y otras partes implicadas de una síntesis completa de la historia y el urbanismo de las ciudades satélite de Bata, en lo relativo a la reinvención y sostenibilidad de proyectos contemporáneos de la industria en geografías en desarrollo.