23 resultados para Applied current
em Universidad Politécnica de Madrid
Resumo:
La investigación realizada en este trabajo de tesis se ha centrado en el estudio de la generación, anclaje y desenganche de paredes de dominio magnético en nanohilos de permalloy con defectos controlados. Las últimas tecnologías de nanofabricación han abierto importantes líneas de investigación centradas en el estudio del movimiento de paredes de dominio magnético, gracias a su potencial aplicación en memorias magnéticas del futuro. En el 2004, Stuart Parkin de IBM introdujo un concepto innovador, el dispositivo “Racetrack”, basado en un nanohilo ferromagnético donde los dominios de imanación representan los "bits" de información. La frontera entre dominios, ie pared magnética, se moverían en una situación ideal por medio de transferencia de espín de una corriente polarizada. Se anclan en determinadas posiciones gracias a pequeños defectos o constricciones de tamaño nanométrico fabricados por litografía electrónica. El éxito de esta idea se basa en la generación, anclaje y desenganche de las paredes de dominio de forma controlada y repetitiva, tanto para la lectura como para la escritura de los bits de información. Slonczewski en 1994 muestra que la corriente polarizada de espín puede transferir momento magnético a la imanación local y así mover paredes por transferencia de espín y no por el campo creado por la corriente. Desde entonces muchos grupos de investigación de todo el mundo trabajan en optimizar las condiciones de transferencia de espín para mover paredes de dominio. La fracción de electrones polarizados que viaja en un hilo ferromagnético es considerablemente pequeña, así hoy por hoy la corriente necesaria para mover una pared magnética por transferencia de espín es superior a 1 107 A/cm2. Una densidad de corriente tan elevada no sólo tiene como consecuencia una importante degradación del dispositivo sino también se observan importantes efectos relacionados con el calentamiento por efecto Joule inducido por la corriente. Otro de los problemas científico - tecnológicos a resolver es la diversidad de paredes de dominio magnético ancladas en el defecto. Los diferentes tipos de pared anclados en el defecto, su quiralidad o el campo o corriente necesarios para desenganchar la pared pueden variar dependiendo si el defecto posee dimensiones ligeramente diferentes o si la pared se ancla con un método distinto. Además, existe una componente estocástica presente tanto en la nucleación como en el proceso de anclaje y desenganche que por un lado puede ser debido a la naturaleza de la pared que viaja por el hilo a una determinada temperatura distinta de cero, así como a defectos inevitables en el proceso de fabricación. Esto constituye un gran inconveniente dado que según el tipo de pared es necesario aplicar distintos valores de corriente y/o campo para desenganchar la pared del defecto. Como se menciona anteriormente, para realizar de forma eficaz la lectura y escritura de los bits de información, es necesaria la inyección, anclaje y desenganche forma controlada y repetitiva. Esto implica generar, anclar y desenganchar las paredes de dominio siempre en las mismas condiciones, ie siempre a la misma corriente o campo aplicado. Por ello, en el primer capítulo de resultados de esta tesis estudiamos el anclaje y desenganche de paredes de dominio en defectos de seis formas distintas, cada uno, de dos profundidades diferentes. Hemos realizado un análisis estadístico en diferentes hilos, donde hemos estudiado la probabilidad de anclaje cada tipo de defecto y la dispersión en el valor de campo magnético aplicado necesario para desenganchar la pared. Luego, continuamos con el estudio de la nucleación de las paredes de dominio magnético con pulsos de corriente a través una linea adyacente al nanohilo. Estudiamos defectos de tres formas distintas e identificamos, en función del valor de campo magnético aplicado, los distintos tipos de paredes de dominio anclados en cada uno de ellos. Además, con la ayuda de este método de inyección que es rápido y eficaz, hemos sido capaces de generar y anclar un único tipo de pared minimizando el comportamiento estocástico de la pared mencionado anteriormente. En estas condiciones óptimas, hemos estudiado el desenganche de las paredes de dominio por medio de corriente polarizada en espín, donde hemos conseguido desenganchar la pared de forma controlada y repetitiva siempre para los mismos valores de corriente y campo magnético aplicados. Además, aplicando pulsos de corriente en distintas direcciones, estudiamos en base a su diferencia, la contribución térmica debido al efecto Joule. Los resultados obtenidos representan un importante avance hacia la explotación práctica de este tipo de dispositivos. ABSTRACT The research activity of this thesis was focused on the nucleation, pinning and depinning of magnetic domain walls (DWs) in notched permalloy nanowires. The access to nanofabrication techniques has boosted the number of applications based on magnetic domain walls (DWs) like memory devices. In 2004, Stuart Parkin at IBM, conceived an innovative concept, the “racetrack memory” based on a ferromagnetic nanowire were the magnetic domains constitute the “bits” of information. The frontier between those magnetic domains, ie magnetic domain wall, will move ideally assisted by a spin polarized current. DWs will pin at certain positions due to artificially created pinning sites or “notches” fabricated with ebeam lithography. The success of this idea relies on the careful and predictable control on DW nucleation and a defined pinning-depinning process in order to read and write the bits of information. Sloncsewski in 1994 shows that a spin polarized current can transfer magnetic moment to the local magnetization to move the DWs instead of the magnetic field created by the current. Since then many research groups worldwide have been working on optimizing the conditions for the current induced DW motion due to the spin transfer effect. The fraction of spin polarized electrons traveling through a ferromagnetic nanowire is considerably small, so nowadays the current density required to move a DW by STT exceeds 1 107 A/cm2. A high current density not only can produce a significant degradation of the device but also important effects related to Joule heating were also observed . There are other scientific and technological issues to solve regarding the diversity of DWs states pinned at the notch. The types of DWs pinned, their chirality or their characteristic depinning current or field, may change if the notch has slightly different dimensions, the stripe has different thickness or even if the DW is pinned by a different procedure. Additionally, there is a stochastic component in both the injection of the DW and in its pinning-depinning process, which may be partly intrinsic to the nature of the travelling DW at a non-zero temperature and partly due to the unavoidable defects introduced during the nano-fabrication process. This constitutes an important inconvenient because depending on the DW type different values of current of magnetic field need to be applied in order to depin a DW from the notch. As mentioned earlier, in order to write and read the bits of information accurately, a controlled reproducible and predictable pinning- depinning process is required. This implies to nucleate, pin and depin always at the same applied magnetic field or current. Therefore, in the first chapter of this thesis we studied the pinning and depinning of DW in six different notch shapes and two depths. An statistical analysis was conducted in order to determine which notch type performed best in terms of pinning probability and the dispersion measured in the magnetic field necessary to depin the magnetic DWs. Then, we continued studying the nucleation of DWs with nanosecond current pulses by an adjacent conductive stripe. We studied the conditions for DW injection that allow a selective pinning of the different types of DWs in Permalloy nanostripes with 3 different notch shapes. Furthermore, with this injection method, which has proven to be fast and reliable, we manage to nucleate only one type of DW avoiding its stochastic behavior mentioned earlier. Having achieved this optimized conditions we studied current induced depinning where we also achieved a controlled and reproducible depinning process at always the same applied current and magnetic field. Additionally, changing the pulse polarity we studied the joule heating contribution in a current induced depinning process. The results obtained represent an important step towards the practical exploitation of these devices.
Resumo:
The understanding of the circulation of ocean currents, the exchange of CO2 between atmosphere and oceans, and the in uence of the oceans on the distribution of heat on a global scale is key to our ability to predict and assess the future evolution of climate.
Resumo:
A global Lagrangian descriptor applied to the Kuroshio current
Resumo:
This paper presents an analysis of the transport of electric current in a jet of an electrically conducting liquid discharging from a metallic tube into a gas or a vacuum, and subject to an electric field due to a high voltage applied between the tube and a far electrode. The flow, the surface charge and the electric field are computed in the current transfer region of the jet, where conduction current in the liquid becomes surface current due to the convection of electric charge accumulated at its surface. The electric current computed as a function of the flow rate of the liquid injected through the tube increases first as the square root of this flow rate, levels to a nearly constant value when the flow rate is increased and finally sets to a linear increase when the flow rate is further increased. The current increases linearly with the applied voltage at small and moderate values of this variable, and faster than linearly at high voltages. The characteristic length and structure of the current transfer region are determined. Order-of-magnitude estimates for jets which are only weakly stretched by the electric stresses are worked out that qualitatively account for some of the numerical results.
Resumo:
This paper presents an image segmentation algorithm based on Gaussian multiscale aggregation oriented to hand biometric applications. The method is able to isolate the hand from a wide variety of background textures such as carpets, fabric, glass, grass, soil or stones. The evaluation was carried out by using a publicly available synthetic database with 408,000 hand images in different backgrounds, comparing the performance in terms of accuracy and computational cost to two competitive segmentation methods existing in literature, namely Lossy Data Compression (LDC) and Normalized Cuts (NCuts). The results highlight that the proposed method outperforms current competitive segmentation methods with regard to computational cost, time performance, accuracy and memory usage.
Resumo:
Due to the particular characteristics of the fusion products, i.e. very short pulses (less than a few μs long for ions when arriving to the walls; less than 1 ns long for X-rays), very high fluences ( 10 13 particles/cm 2 for both ions and X rays photons) and broad particle energy spectra (up to 10 MeV ions and 100 keV photons), the laser fusion community lacks of facilities to accurately test plasma facing materials under those conditions. In the present work, the ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce those ion and X-ray bursts. Based on those parameters, a comparison between fusion ion and laser driven ion beams is presented and discussed, describing a possible experimental set-up to generate with lasers the appropriate ion pulses. At the same time, the possibility of generating X-ray or neutron beams which simulate those of laser fusion environments is also indicated and assessed under current laser intensities. It is concluded that ultraintense lasers should play a relevant role in the validation of materials for laser fusion facilities.
Resumo:
This work is related to the improvement of the dynamic performance of the Buck converter by means of introducing an additional power path that virtually increase s the output capacitance during transients, thus improving the output impedance of the converter. It is well known that in VRM applications, with wide load steps, voltage overshoots and undershoots ma y lead to undesired performance of the load. To solve this problem, high-bandwidth high-switching frequency power converter s can be applied to reduce the transient time or a big output capacitor can be applied to reduce the output impedance. The first solution can degrade the efficiency by increasing switching losses of the MOSFETS, and the second solution is penalizing the cost and size of the output filter. The additional energy path, as presented here, is introduced with the Output Impedance Correction Circuit (OICC) based on the Controlled Current Source (CCS). The OICC is using CCS to inject or extract a current n - 1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. This feature allows the usage of a low frequency Buck converter with smaller capacitor but satisfying the dynamic requirements.
Resumo:
High switching frequencies (several MHz) allow the integration of low power DC/DC converters. Although, in theory, a high switching frequency would make possible to implement a conventional Voltage Mode control (VMC) or Peak Current Mode control (PCMC) with very high bandwidth, in practice, parasitic effects and robustness limits the applicability of these control techniques. This paper compares VMC and CMC techniques with the V2IC control. This control is based on two loops. The fast internal loop has information of the output capacitor current and the error voltage, providing fast dynamic response under load and voltage reference steps, while the slow external voltage loop provides accurate steady state regulation. This paper shows the fast dynamic response of the V2IC control under load and output voltage reference steps and its robustness operating with additional output capacitors added by the customer.
Resumo:
This article reviews several recently developed Lagrangian tools and shows how their com- bined use succeeds in obtaining a detailed description of purely advective transport events in general aperiodic flows. In particular, because of the climate impact of ocean transport processes, we illustrate a 2D application on altimeter data sets over the area of the Kuroshio Current, although the proposed techniques are general and applicable to arbitrary time depen- dent aperiodic flows. The first challenge for describing transport in aperiodical time dependent flows is obtaining a representation of the phase portrait where the most relevant dynamical features may be identified. This representation is accomplished by using global Lagrangian descriptors that when applied for instance to the altimeter data sets retrieve over the ocean surface a phase portrait where the geometry of interconnected dynamical systems is visible. The phase portrait picture is essential because it evinces which transport routes are acting on the whole flow. Once these routes are roughly recognised it is possible to complete a detailed description by the direct computation of the finite time stable and unstable manifolds of special hyperbolic trajectories that act as organising centres of the flow.
Resumo:
This paper tackles the optimization of applications in multi-provider hybrid cloud scenarios from an economic point of view. In these scenarios the great majority of solutions offer the automatic allocation of resources on different cloud providers based on their current prices. However our approach is intended to introduce a novel solution by making maximum use of divide and rule. This paper describes a methodology to create cost aware cloud applications that can be broken down into the three most important components in cloud infrastructures: computation, network and storage. A real videoconference system has been modified in order to evaluate this idea with both theoretical and empirical experiments. This system has become a widely used tool in several national and European projects for e-learning and collaboration purposes.
Resumo:
Security intrusions in large systems is a problem due to its lack of scalability with the current IDS-based approaches. This paper describes the RECLAMO project, where an architecture for an Automated Intrusion Response System (AIRS) is being proposed. This system will infer the most appropriate response for a given attack, taking into account the attack type, context information, and the trust and reputation of the reporting IDSs. RECLAMO is proposing a novel approach: diverting the attack to a specific honeynet that has been dynamically built based on the attack information. Among all components forming the RECLAMO's architecture, this paper is mainly focused on defining a trust and reputation management model, essential to recognize if IDSs are exposing an honest behavior in order to accept their alerts as true. Experimental results confirm that our model helps to encourage or discourage the launch of the automatic reaction process.
Resumo:
The bandwidth achievable by using voltage mode control or current mode control in switch-mode power supply is limited by the switching frequency. Fast transient response requires high switching frequency, although lower switching frequencies could be more suitable for higher efficiency. This paper proposes the use of hysteretic control of the output capacitor $(C_{out})$ current to improve the dynamic response of the buck converter. An external voltage loop is required to accurately regulate the output voltage. The design of the hysteretic loop and the voltage loop are presented. Besides, it is presented a non-invasive current sensor that allows measuring the current in the capacitor. This strategy has been applied for DVS (dynamic voltage scaling) on a 5 MHz buck converter. Experimental results validate the proposed control technique and show fast transient response from 1.5 V to 2.5 V in 2 $mu{rm s}$.
Resumo:
High power density is strongly preferable for the on-board battery charger of Plug-in Hybrid Electric Vehicle (PHEV). Wide band gap devices, such as Gallium Nitride HEMTs are being explored to push to higher switching frequency and reduce passive component size. In this case, the bulk DC link capacitor of AC-DC Power Factor Correction (PFC) stage, which is usually necessary to store ripple power of two times the line frequency in a DC current charging system, becomes a major barrier on power density. If low frequency ripple is allowed in the battery, the DC link capacitance can be significantly reduced. This paper focuses on the operation of a battery charging system, which is comprised of one Full Bridge (FB) AC-DC stage and one Dual Active Bridge (DAB) DC-DC stage, with charging current containing low frequency ripple at two times line frequency, designated as sinusoidal charging. DAB operation under sinusoidal charging is investigated. Two types of control schemes are proposed and implemented in an experimental prototype. It is proved that closed loop current control is the better. Full system test including both FB AC-DC stage and DAB DC-DC stage verified the concept of sinusoidal charging, which may lead to potentially very high power density battery charger for PHEV.
Resumo:
This paper presents the detection and identification of hydrocarbons through flu oro-sensing by developing a simple and inexpensive detector for inland water, in contrast to current systems, designed to be used for marine waters at large distances and being extremely costly. To validate the proposed system, three test-benches have been mounted, with various UV-Iight sources. Main application of this system would be detect hydrocarbons pollution in rivers, lakes or dams, which in fact, is of growing interest by administrations.
Resumo:
Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joint has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Finally, a preliminary numerical study by means of Finite Element Method (FEM) of the mechanical behavior of the joints between commercial HTS is presented.