2 resultados para Antilock brake systems.
em Universidad Politécnica de Madrid
Resumo:
Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems. ©2011 by the authors.
Resumo:
La rápida adopción de dispositivos electrónicos en el automóvil, ha contribuido a mejorar en gran medida la seguridad y el confort. Desde principios del siglo 20, la investigación en sistemas de seguridad activa ha originado el desarrollo de tecnologías como ABS (Antilock Brake System), TCS (Traction Control System) y ESP (Electronic Stability Program). El coste de despliegue de estos sistemas es crítico: históricamente, sólo han sido ampliamente adoptados cuando el precio de los sensores y la electrónica necesarios para su construcción ha caído hasta un valor marginal. Hoy en día, los vehículos a motor incluyen un amplio rango de sensores para implementar las funciones de seguridad. La incorporación de sistemas que detecten la presencia de agua, hielo o nieve en la vía es un factor adicional que podría ayudar a evitar situaciones de riesgo. Existen algunas implementaciones prácticas capaces de detectar carreteras mojadas, heladas y nevadas, aunque con limitaciones importantes. En esta tesis doctoral, se propone una aproximación novedosa al problema, basada en el análisis del ruido de rodadura generado durante la conducción. El ruido de rodadura es capturado y preprocesado. Después es analizado utilizando un clasificador basado en máquinas de vectores soporte (SVM), con el fin de generar una estimación del estado del firme. Todas estas operaciones se realizan en el propio vehículo. El sistema propuesto se ha desarrollado y evaluado utilizando Matlabr, mostrando tasas de aciertos de más del 90%. Se ha realizado una implementación en tiempo real, utilizando un prototipo basado en DSP. Después se han introducido varias optimizaciones para permitir que el sistema sea realizable usando un microcontrolador de propósito general. Finalmente se ha realizado una implementación hardware basada en un microcontrolador, integrándola estrechamente con las ECU del vehículo, pudiendo obtener datos capturados por los sensores del mismo y enviar las estimaciones del estado del firme. El sistema resultante ha sido patentado, y destaca por su elevada tasa de aciertos con un tamaño, consumo y coste reducidos. ABSTRACT Proliferation of automotive electronics, has greatly improved driving safety and comfort. Since the beginning of the 20th century, investigation in active safety systems has resulted in the development of technologies such as ABS (Antilock Brake System), TCS (Traction Control System) and ESP (Electronic Stability Program). Deployment cost of these systems is critical: historically, they have been widely adopted only when the price of the sensors and electronics needed to build them has been cut to a marginal value. Nowadays, motor vehicles include a wide range of sensors to implement the safety functions. Incorporation of systems capable of detecting water, ice or snow on the road is an additional factor that could help avoiding risky situations. There are some implementations capable of detecting wet, icy and snowy roads, although with important limitations. In this PhD Thesis, a novel approach is proposed, based on the analysis of the tyre/road noise radiated during driving. Tyre/road noise is captured and pre-processed. Then it is analysed using a Support Vector Machine (SVM) based classifier, to output an estimation of the road status. All these operations are performed on-board. Proposed system is developed and evaluated using Matlabr, showing success rates greater than 90%. A real time implementation is carried out using a DSP based prototype. Several optimizations are introduced enabling the system to work using a low-cost general purpose microcontroller. Finally a microcontroller based hardware implementation is developed. This implementation is tightly integrated with the vehicle ECUs, allowing it to obtain data captured by its sensors, and to send the road status estimations. Resulting system has been patented, and is notable because of its high hit rate, small size, low power consumption and low cost.