4 resultados para Antiferromagnetic correlations
em Universidad Politécnica de Madrid
Resumo:
Correlación entre adherencia a la dieta y el ejercicio en programas de perdida de peso en función del sexo
Resumo:
The influence of a strong, high‐frequency electric field on the ion‐ion correlations in a fully ionized plasma is investigated in the limit of infinite ion mass, starting with the Bogoliubov‐Born‐Green‐Kirkwood‐Yvon hierarchy of equations; a significant departure from the thermal correlations is found. It is shown that the above effect may substantially modify earlier results on the nonlinear high‐frequency plasma conductivity.
Resumo:
On the basis of the BBGKY hierarchy of equations an expression is derived for the response of a fully ionized plasma to a strong, high-frequency electric field in the limit of infinite ion mass. It is found that even in this limit the ionion correlation function is substantially affected by the field. The corrections to earlier nonlinear results for the current density appear to be quite ssential. The validity of the model introduced by Dawson and Oberman to study the response to a vanishingly small field is confirmed for larger values of the field when the eorrect expression for the ion-ion correlations i s introduced; the model by itself does not yield such an expression. The results have interest for the heating of the plasma and for the propagation of a strong electromagnetic wave through the plasma. The theory seems to be valid for any field intensity for which the plasma is stable.
Resumo:
Fission product yields are fundamental parameters for several nuclear engineering calculations and in particular for burn-up/activation problems. The impact of their uncertainties was widely studied in the past and valuations were released, although still incomplete. Recently, the nuclear community expressed the need for full fission yield covariance matrices to produce inventory calculation results that take into account the complete uncertainty data. In this work, we studied and applied a Bayesian/generalised least-squares method for covariance generation, and compared the generated uncertainties to the original data stored in the JEFF-3.1.2 library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the library. The uncertainty quantification was performed with the Monte Carlo sampling technique. Indeed, correlations between fission yields strongly affect the statistics of decay heat. Introduction Nowadays, any engineering calculation performed in the nuclear field should be accompanied by an uncertainty analysis. In such an analysis, different sources of uncertainties are taken into account. Works such as those performed under the UAM project (Ivanov, et al., 2013) treat nuclear data as a source of uncertainty, in particular cross-section data for which uncertainties given in the form of covariance matrices are already provided in the major nuclear data libraries. Meanwhile, fission yield uncertainties were often neglected or treated shallowly, because their effects were considered of second order compared to cross-sections (Garcia-Herranz, et al., 2010). However, the Working Party on International Nuclear Data Evaluation Co-operation (WPEC)