3 resultados para AntiPatterns
em Universidad Politécnica de Madrid
Resumo:
Ontology antipatterns are structures that reflect ontology modelling problems, they lead to inconsistencies, bad reasoning performance or bad formalisation of domain knowledge. Antipatterns normally appear in ontologies developed by those who are not experts in ontology engineering. Based on our experience in ontology design, we have created a catalogue of such antipatterns in the past, and in this paper we describe how we can use SPARQL-DL to detect them. We conduct some experiments to detect them in a large OWL ontology corpus obtained from the Watson ontology search portal. Our results show that each antipattern needs a specialised detection method.
Resumo:
Ontology antipatterns are structures that reflect ontology modelling problems because they lead to inconsistencies, bad reasoning performance or bad formalisation of domain knowledge. We propose four methods for the detection of antipatterns using SPARQL queries.We conduct some experiments to detect antipattern in a corpus of OWL ontologies.
Resumo:
People in industrial societies carry more and more portable electronic devices (e.g., smartphone or console) with some kind of wireles connectivity support. Interaction with auto-discovered target devices present in the environment (e.g., the air conditioning of a hotel) is not so easy since devices may provide inaccessible user interfaces (e.g., in a foreign language that the user cannot understand). Scalability for multiple concurrent users and response times are still problems in this domain. In this paper, we assess an interoperable architecture, which enables interaction between people with some kind of special need and their environment. The assessment, based on performance patterns and antipatterns, tries to detect performance issues and also tries to enhance the architecture design for improving system performance. As a result of the assessment, the initial design changed substantially. We refactorized the design according to the Fast Path pattern and The Ramp antipattern. Moreover, resources were correctly allocated. Finally, the required response time was fulfilled in all system scenarios. For a specific scenario, response time was reduced from 60 seconds to less than 6 seconds.