3 resultados para Ann mass flux

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new 10 year surface mass balance (SMB) record of Hurd and Johnsons Glaciers, Livingston Island, Antarctica, is presented and compared with earlier estimates on the basis of local and regional meteorological conditions and trends.Since Johnsons is a tidewater glacier, we also include a calving flux calculation to estimate its total mass balance. The average annual SMB over the 10 year observation period 2002–11 is –0.15�0.10 m w.e. for Hurd Glacier and 0.05�0.10 m w.e. for Johnsons Glacier. Adding the calving losses to the latter results in a total mass balance of –0.09�0.10 m w.e. There has been a deceleration of the mass losses of these glaciers from 1957–2000 to 2002–11, which have nearly halved for both glaciers. We attribute this decrease in the mass losses to a combination of increased accumulation in the region and decreased melt. The increased accumulation is attributed to larger precipitation associated with the recent deepening of the circumpolar pressure trough, while the melt decrease is associated with lower summer surface temperatures during the past decade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quasisteady structure of the corona of a laser-irradiated pellet is completely determined for arbitrary Z, (ion charge number} and re/ra (ratio of critical and ablation radii), and for heat-flux saturation factor/above approximately 0.04. The ion-to-electron temperature ratio at rc grows sensibly with Z,; all other quantities depend weakly and nonmonotonically on Z,. For rc /ra close to unity, and all Z, of interest (Z, < 47}, the flow is subsonic at rc. For a given laser power W, flux saturation may decrease (low/) or increase (high/) the ablation pressure Pa relative to the value obtained when saturation is not considered; in some cases a decrease in/with W fixed increases Pa. For intermediate^ ~0.1), Pa cc (W/r* )2/3 p\n\pc = critical density), independently of rc/ra; for/~0.6, Pa «s larger by a factor of about [rc/raf13. For rjra > 1.2 roughly, the mass ablation rate is C{Z,) [{m/kZ.f^Kr^Pl) l,\ independent of pc and/, and barely dependent on Z,(m, is ion mass; k, Boltzmann's constant; K, conductivity coefficient; and C, a tabulated function).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mass budget of the ice caps surrounding the Antarctica Peninsula and, in particular, the partitioning of its main components are poorly known. Here we approximate frontal ablation (i.e. the sum of mass losses by calving and submarine melt) and surface mass balance of the ice cap of Livingston Island, the second largest island in the South Shetland Islands archipelago, and analyse variations in surface velocity for the period 2007–2011. Velocities are obtained from feature tracking using 25 PALSAR-1 images, and used in conjunction with estimates of glacier ice thicknesses inferred from principles of glacier dynamics and ground-penetrating radar observations to estimate frontal ablation rates by a flux-gate approach. Glacier-wide surface mass-balance rates are approximated from in situ observations on two glaciers of the ice cap. Within the limitations of the large uncertainties mostly due to unknown ice thicknesses at the flux gates, we find that frontal ablation (−509 ± 263 Mt yr−1, equivalent to −0.73 ± 0.38 m w.e. yr−1 over the ice cap area of 697 km2) and surface ablation (−0.73 ± 0.10 m w.e. yr−1) contribute similar shares to total ablation (−1.46 ± 0.39 m w.e. yr−1). Total mass change (δM = −0.67 ± 0.40 m w.e. yr−1) is negative despite a slightly positive surface mass balance (0.06 ± 0.14 m w.e. yr−1). We find large interannual and, for some basins, pronounced seasonal variations in surface velocities at the flux gates, with higher velocities in summer than in winter. Associated variations in frontal ablation (of ~237 Mt yr−1; −0.34 m w.e. yr−1) highlight the importance of taking into account the seasonality in ice velocities when computing frontal ablation with a flux-gate approach.