30 resultados para Amplitude error

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper was to accurately estimate the local truncation error of partial differential equations, that are numerically solved using a finite difference or finite volume approach on structured and unstructured meshes. In this work, we approximated the local truncation error using the @t-estimation procedure, which aims to compare the residuals on a sequence of grids with different spacing. First, we focused the analysis on one-dimensional scalar linear and non-linear test cases to examine the accuracy of the estimation of the truncation error for both finite difference and finite volume approaches on different grid topologies. Then, we extended the analysis to two-dimensional problems: first on linear and non-linear scalar equations and finally on the Euler equations. We demonstrated that this approach yields a highly accurate estimation of the truncation error if some conditions are fulfilled. These conditions are related to the accuracy of the restriction operators, the choice of the boundary conditions, the distortion of the grids and the magnitude of the iteration error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to analyze the different adjustment methods commonly used to characterize indirect metrology circular features: least square circle, minimum zone circle, maximum inscribed circle and minimum circumscribed circle. The analysis was performed from images obtained by digital optical machines. The calculation algorithms, self-developed, have been implemented in Matlab® and take into consideration as study variables: the amplitude of angular sector of the circular feature, its nominal radio and the magnification used by the optical machine. Under different conditions, it was determined the radius and circularity error of different circular standards. The comparison of the results, obtained by the different methods of adjustments used, with certified values for the standards, has allowed us to determine the accuracy of each method and its scope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the effect of packet losses in video sequences and propose a lightweight Unequal Error Protection strategy which, by choosing which packet is discarded, reduces strongly the Mean Square Error of the received sequence

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a simple and innovative method to compare any two texture maps, regardless of their sizes, aspect ratios, or even masks, as long as they are both meant to be mapped onto the same 3D mesh. Our system is based on a zero-distortion 3D mesh unwrapping technique which compares two new adapted texture atlases with the same mask but different texel colors, and whose every texel covers the same area in 3D. Once these adapted atlases are created, we measure their difference with ITEM-RMSE, a slightly modified version of the standard RMSE defined for images. ITEM-RMSE is more meaningful and reliable than RMSE because it only takes into account the texels inside the mask, since they are the only ones that will actually be used during rendering. Our method is not only very useful to compare the space efficiency of different texture atlas generation algorithms, but also to quantify texture loss in compression schemes for multi-resolution textured 3D meshes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a diagnosis algorithm for locating a certain kind of errors in logic programs: variable binding errors that result in abstract symptoms during compile-time checking of assertions based on abstract interpretation. The diagnoser analyzes the graph generated by the abstract interpreter, which is a provably safe approximation of the program semantics. The proposed algorithm traverses this graph to find the point where the actual error originates (a reason of the symptom), leading to the point the error has been reported (the symptom). The procedure is fully automatic, not requiring any interaction with the user. A prototype diagnoser has been implemented and preliminary results are encouraging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el presente trabajo de tesis se afronta el problema de la optimización de la superficie de grandes antenas reflectoras. Es sabido que los grandes reflectores, formados por una superficie panelada, sufren deformaciones debidas al impacto del viento, a los cambios de temperatura y a los efectos gravitacionales derivados del gran peso de la estructura. Estos efectos hacen que los reflectores pierdan su forma ideal, generalmente de paraboloide, y se reduzca su eficiencia de apertura y, por tanto, se limite la máxima frecuencia de uso de los mismos. Es necesario, por tanto, disponer de técnicas que permitan medir el estado de la superficie de grandes reflectores, y derivar los ajustes necesarios a aplicar sobre los tornillos de soporte de cada uno de los paneles que conforman dicha superficie. De esta manera, se devolvería al reflector su forma óptima y aumentaría la eficiencia de apertura y el rango de frecuencias de uso. Hay que resaltar que el aumento de la eficiencia de un radiotelescopio supone una reducción en el tiempo de integración necesario para la detección de las debilísimas señales generadas por las radiofuentes naturales, ahorrando así valioso tiempo de observación. Además, el incremento en el rango de frecuencias permite la detección de nuevas líneas o especies moleculares en dichas radiofuentes. Tras un primer capítulo introductorio, se presenta, en el capítulo segundo, la geometría de estos grandes reflectores y la influencia de los distintos factores que afectan a la calidad de la superficie de los mismos, como la gravedad, el viento y la temperatura, particularizando para el caso del radiotelescopio de 40 metros del Centro Astronómico de Yebes. En el tercer capítulo, se presentan las diferentes técnicas metrológicas empleadas actualmente para abordar la determinación de estos ajustes, mostrándose las ventajas e inconvenientes de cada una de ellas. Actualmente, la técnica metrológica más precisa y rápida para llevar a cabo esta tarea de caracterización de la superficie de un gran reflector, es la radio-holografía de microondas presentada en el capítulo cuarto. A partir de las medidas proporcionadas por esta técnica, realizadas con la ayuda de un transmisor, y mediante transformaciones de campo, se calculan los errores de la superficie del reflector, respecto al paraboloide ideal, y se derivan los ajustes necesarios. En los capítulos quinto y sexto se presentan los resultados de la aplicación de esta técnica a dos radiotelescopios: el de 30 metros de IRAM en Pico de Veleta (Granada) y los prototipos de 12 metros de las antenas del proyecto ALMA. Por su parte, el capítulo séptimo contiene el núcleo fundamental de esta tesis y presenta el desarrollo de la técnica de radio-holografía de microondas para optimizar la superficie del radiotelescopio de 40 metros del Centro Astronómico de Yebes. Para ello, ha sido necesario diseñar, construir e instalar un receptor de doble canal en banda Ku en foco primario, y la instrumentación asociada para hacer las medidas de amplitud y fase del diagrama de radiación. Además, ha sido necesario desarrollar el software para llevar a cabo las transformaciones de campo y derivar los ajustes de los paneles. De las medidas holográficas iniciales resultó un error de la superficie del radiotelescopio de 485 μm WRMS, respecto al paraboloide ideal en dirección normal. Tras varias iteraciones del proceso de medida y ajuste, se consiguió reducir dicho error a 194 μm WRMS. Esta notable mejora de la calidad de la superficie ha supuesto aumentar la eficiencia de apertura desde 2,6% al 38,2% a 86 GHz, para un receptor a esta frecuencia situado en el foco primario que produjese la misma iluminación que el receptor de holografía. In this thesis the problem of large reflector antenna surface optimization is faced. It is well known that large reflectors, which are made of a panelled surface, suffer from deformations due to the impact of wind, temperature gradients and gravity loads coming from the high weigth of the structure. These effects distort the ideal reflector shape, which is a paraboloid in most cases, hence reducing the aperture efficiency of the reflector and limiting the maximum frequency of operation. Therefore, it is necessary to have some techniques to measure the status of large reflector surfaces and to derive the adjustment values to be applied to the screws that connect the surface panels to the reflector back-up structure. In this way, the reflector would recover its optimum shape and the aperture efficiency and frequency range would increase. It has to be stated that an increment in the radiotelescope aperture efficiency would imply a reduction in the integration time needed to detect such weak signals coming from natural radiosources in space and, hence, an important saving in observation time. In addition, the increase in the frequency range of operation would allow the detection of new molecular lines in those radiosources. After the introduction, the second chapter shows the geometry of large reflector antennas and the impact on its surface quality of different factors like gravity, wind and temperature, particularly for the case of the Centro Astronómico de Yebes 40 meter radiotelescope. The third chapter deals with the different metrology techniques used to determine the panel adjustments, including the advantages and drawbacks of each one Currently, the most accurate and fast metrologic technique to carry out the characterization of large reflector surfaces is microwave radio-holography2, which is shown in chapter four. From the measurements provided by microwave radio-holography, performed with the help of a transmitter, and with the use of field transformations, the reflector surface errors are computed and the panel adjustments are derived. Chapters five and six show the results of holographic measurements applied to two first class radiotelescopes: the IRAM 30 meter radiotelescope and the 12 meter prototype antennas for the ALMA project. Chapter seven contains the main work of this thesis. It presents the development of the microwave radio-holography technique for the optimization of the Centro Astronómico de Yebes 40m radiotelescope. The work implied the design, construction and instalation of a prime focus Ku-band dual channel receiver, together with the associated instrumentation to measure the amplitude and phase of the radiotelescope radiation pattern. In addition, the software to carry out field transformations and screw settings computations was developed too. Initial holography measurements came up with an surface error of 485 μmWRMS in normal direction with respect to the best-fit paraboloid. After a few iterations of the measurementadjustment cycle, the surface error was reduced to 194 μm WRMS. This remarkable improvement in surface quality means an increment in aperture efficiency from 2,6% to 38,2% at 86 GHz, assuming a receiver at this frequency in prime focus position which produces the same illumination as the holography receiver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desarrollos recientes para encajar dentro de un marco variacional la llamada Formulación Libre sugieren la posibilidad de introducir un nuevo tipo de estimador de error para cálculos por elementos finitos. Este estimador se basa en una diferencia entre ciertos funcionales multicampo, que toman el mismo valor para la solución exacta del problema. En el presente articulo, dividido en dos partes, se introduce la formulación del estimador para problemas de elasticidad y de flexión de placas según las hipótesis clásicas de Kirchhoff. Se presentan también algunos ejeinplos para dar idea de los comportamientos numéricos observados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesh adaptation based on error estimation has become a key technique to improve th eaccuracy o fcomputational-fluid-dynamics computations. The adjoint-based approach for error estimation is one of the most promising techniques for computational-fluid-dynamics applications. Nevertheless, the level of implementation of this technique in the aeronautical industrial environment is still low because it is a computationally expensive method. In the present investigation, a new mesh refinement method based on estimation of truncation error is presented in the context of finite-volume discretization. The estimation method uses auxiliary coarser meshes to estimate the local truncation error, which can be used for driving an adaptation algorithm. The method is demonstrated in the context of two-dimensional NACA0012 and three-dimensional ONERA M6 wing inviscid flows, and the results are compared against the adjoint-based approach and physical sensors based on features of the flow field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desarrollos recientes para encajar dentro de un marco variacional la llamada Formulación Libre sugieren la posibilidad de introducir un nuevo tipo de estimador de error para cálculos por elementos finitos. Este estimador se basa en una diferencia entre ciertos funcionales multicampo, que toman el mismo valor para la solución exacta del problema. En el presente artículo, dividido en dos partes, se introduce la formulación del estimador para problemas de elasticidad y de flexión de placas según las hipótesis clásicas de Kirchhoff. Se presentan también algunos ejemplos para dar idea de los comportamientos numéricos observados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la vida cotidiana, los errores no solo se reconocen, sino que también nos plantean nuevas situaciones. En la “filosofía de la ciencia” se han tratado como un factor determinante para la definición y la crítica de la propia ciencia. Se pretende que a través de la solución del “problema filosófico del error” de Víctor Brochard, y de algunos episodios claves de la epistemología, reconozcamos “el error” dentro de los procesos arquitectónicos como un factor crítico y productivo en sí mismo. ABSTRACT: In everyday life, errors are not only acknowledged, but they also expose us to new situations. In the field of philosophy of science, errors have been viewed as an important factor for determining and reviewing the definition of science itself. This article proposes that: through Victor Brochard´s solution of “the philosophical problem of error” and through some key aspects in epistemology, we will be able to determine that architectural “errors” can provide us with reflective and productive insights in architecture.