3 resultados para Amplitude Equation
em Universidad Politécnica de Madrid
Resumo:
We study a model equation that mimics convection under rotation in a fluid with temperature- dependent properties (non-Boussinesq (NB)), high Prandtl number and idealized boundary conditions. It is based on a model equation proposed by Segel [1965] by adding rotation terms that lead to a Kuppers-Lortz instability [Kuppers & Lortz, 1969] and can develop into oscillating hexagons. We perform a weakly nonlinear analysis to find out explicitly the coefficients in the amplitude equation as functions of the rotation rate. These equations describe hexagons and os- cillating hexagons quite well, and include the Busse?Heikes (BH) model [Busse & Heikes, 1980] as a particular case. The sideband instabilities as well as short wavelength instabilities of such hexagonal patterns are discussed and the threshold for oscillating hexagons is determined.
Resumo:
Esta tesis se centra en la generación de ondas superficiales subarmónicas en fluidos sometidos a vibración forzada en el régimen gravitatorio capilar con líquidos de baja viscosidad. Tres problemas diferentes han sido estudiados: un contenedor rectangular con vibración horizontal, la misma geometría pero con una combinación de vibración vertical y horizontal y un obstáculo completamente sumergido vibrado verticalmente en un contenedor grande. Se deriva una ecuación de amplitud desde primeros principios para describir las ondas subarmónicas con forzamiento parámetrico inducido por la vibración. La ecuación es bidimensional mientras que el problema original es tridimensional y admite un forzamiento espacial no uniforme. Usando esta ecuación los tres sistemas han sido analizados, centrándose en calcular la amplitud crítica, la orientación de los patrones y el carácter temporal de los patrones espaciotemporales, que pueden ser estrictamente subarmónicos o cuasiperiodicos con una frecuencia de modulación temporal. La dependencia con los parámetros adimensionales también se considera. La teoría será comparada con los experimentos disponibles en la literatura. Abstract This thesis focus on the generation of subharmonic surface waves on fluids subject to forced vibration in the gravity-capillary regime with liquids of small viscosity. Three different problems have been considered: a rectangular container under horizontal vibration; the same geometry but under a combination of horizontal and vertical vibration; and a fully submerged vertically vibrated obstacle in a large container. An amplitude equation is derived from first principles that fairly precisely describes the subharmonic surfaces waves parametrically driven by vibration. That equation is two dimensional while the underlying problem is three-dimensional and permits spatially nonuniform forcing. Using this equation, the three systems have been analyzed, focusing on the calculation of the threshold amplitude, the pattern orientation, and the temporal character of the spatio-temporal patterns, which can be either strictly subharmonic or quasi-periodic, showing an additional modulation frequency. Dependence on the non-dimensional parameters is also considered. The theory is compared with the experiments available in the literature.
Resumo:
We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude