2 resultados para American National Red Cross.
em Universidad Politécnica de Madrid
Resumo:
En términos generales, m-salud puede definirse como el conjunto de sistemas de información, sensores médicos y tecnologías de comunicaciones móviles para el cuidado de la salud. La creciente disponibilidad, miniaturización, comportamiento, velocidades de transmisión de datos cada vez mayores y la esperada convergencia de tecnologías de red y comunicaciones inalámbricas en torno a los sistemas de salud móviles están acelerando el despliegue de estos sistemas y la provisión de servicios de m-salud, como por ejemplo, la teleasistencia móvil. El concepto emergente de m-salud conlleva retos importantes (estudios técnicos, análisis, modelado de la provisión de servicios, etc.) que hay que afrontar para impulsar la evolución de los sistemas y servicios de e-salud ofrecidos desde tecnologías de telecomunicación que utilizan acceso por cable y redes fijas, hacia configuraciones móviles e inalámbricas de última generación. En este trabajo se analizará primeramente el significado e implicaciones de m-salud y la situación en la que se encuentra; los retos a los que hay que enfrentarse para su implantación y provisión así como su tendencia. De los múltiples y diferentes servicios que se pueden proveer se ha identificado el servicio de Localización de Personas LoPe, lanzado por Cruz Roja en febrero de 2007, para teleasistencia móvil y que permite conocer en todo momento la ubicación de la persona que porta su dispositivo asociado. Orientado a personas con discapacidad, en situación de riesgo o dependencia por deterioro cognitivo, tiene como objetivo ayudarlas a recuperar su autonomía personal. La provisión de este servicio se modelará mediante dinámica de sistemas, ya que esta teoría se considera idónea para modelar sistemas complejos que evolucionan con el tiempo. El resultado final es un modelo que implementado a través de la herramienta Studio 8® de la compañía noruega Powersim Software AS nos ha permitido analizar y evaluar su comportamiento a lo largo del tiempo, además de permitirnos extraer conclusiones sobre el mismo y plantear futuras mejoras sobre el servicio. ABSTRACT. In general terms, m-health can be defined as “mobile computing, medical sensor, and communications technologies for health care.” The increased availability, miniaturization, performance, enhanced data rates, and the expected convergence of future wireless communication and network technologies around mobile health systems are accelerating the deployment of m-health systems and services, for instance, mobile telecare. The emerging concept of m-health involves significant challenges (technical studies, analysis, modeling of service provision, etc.) that must be tackled to drive the development of e-health services and systems offered by telecommunication technologies that use wired and fixed networks towards wireless and mobile new generation networks. Firstly, in this master’s thesis, the meaning and implications of m-health and its current situation are analyzed. This analysis also includes the challenges that must be tackled for the implementation and provision of m-health technologies and services and the m-health trends. Among the many different m-health services already delivered, the Localización de Personas LoPe service has been identified to work with it. This service, launched by Spanish Red Cross in February 2007, enables to locate people who carry the associated device. It’s aimed at people with disabilities, at risk or dependency due to cognitive impairment and helps them to recover their personal autonomy. The provision of this service will be modeled with system dynamics considering that this theory suits very well the modeling of complex systems which evolve over time. The final result is a system dynamics model of the service implemented with Studio 8® tool developed by Powersim Software AS, a Norwegian company. This model has allowed us to analyze and evaluate its behaviour over time, as well as to draw conclusions and to consider some future improvements in the service.
Resumo:
Intercontinental Ballistic Missiles are capable of placing a nuclear warhead at more than 5,000 km away from its launching base. With the lethal power of a nuclear warhead a whole city could be wiped out by a single weapon causing millions of deaths. This means that the threat posed to any country from a single ICBM captured by a terrorist group or launched by a 'rogue' state is huge. This threat is increasing as more countries are achieving nuclear and advanced launcher capabilities. In order to suppress or at least reduce this threat the United States created the National Missile Defense System which involved, among other systems, the development of long-range interceptors whose aim is to destroy incoming ballistic missiles in their midcourse phase. The Ballistic Missile Defense is a high-profile topic that has been the focus of political controversy lately when the U.S. decided to expand the Ballistic Missile system to Europe, with the opposition of Russia. However the technical characteristics of this system are mostly unknown by the general public. The Interception of an ICBM using a long range Interceptor Missile as intended within the Ground-Based Missile Defense System by the American National Missile Defense (NMD) implies a series of problems of incredible complexity: - The incoming missile has to be detected almost immediately after launch. - The incoming missile has to be tracked along its trajectory with a great accuracy. - The Interceptor Missile has to implement a fast and accurate guidance algorithm in order to reach the incoming missile as soon as possible. - The Kinetic Kill Vehicle deployed by the interceptor boost vehicle has to be able to detect the reentry vehicle once it has been deployed by ICBM, when it offers a very low infrared signature, in order to perform a final rendezvous manoeuvre. - The Kinetic Kill Vehicle has to be able to discriminate the reentry vehicle from the surrounding debris and decoys. - The Kinetic Kill Vehicle has to be able to implement an accurate guidance algorithm in order to perform a kinetic interception (direct collision) of the reentry vehicle, at relative speeds of more than 10 km/s. All these problems are being dealt simultaneously by the Ground-Based Missile Defense System that is developing very complex and expensive sensors, communications and control centers and long-range interceptors (Ground-Based Interceptor Missile) including a Kinetic Kill Vehicle. Among all the technical challenges involved in this interception scenario, this thesis focuses on the algorithms required for the guidance of the Interceptor Missile and the Kinetic Kill Vehicle in order to perform the direct collision with the ICBM. The involved guidance algorithms are deeply analysed in this thesis in part III where conventional guidance strategies are reviewed and optimal guidance algorithms are developed for this interception problem. The generation of a realistic simulation of the interception scenario between an ICBM and a Ground Based Interceptor designed to destroy it was considered as necessary in order to be able to compare different guidance strategies with meaningful results. As a consequence, a highly representative simulator for an ICBM and a Kill Vehicle has been implemented, as detailed in part II, and the generation of these simulators has also become one of the purposes of this thesis. In summary, the main purposes of this thesis are: - To develop a highly representative simulator of an interception scenario between an ICBM and a Kill Vehicle launched from a Ground Based Interceptor. -To analyse the main existing guidance algorithms both for the ascent phase and the terminal phase of the missiles. Novel conclusions of these analyses are obtained. - To develop original optimal guidance algorithms for the interception problem. - To compare the results obtained using the different guidance strategies, assess the behaviour of the optimal guidance algorithms, and analyse the feasibility of the Ballistic Missile Defense system in terms of guidance (part IV). As a secondary objective, a general overview of the state of the art in terms of ballistic missiles and anti-ballistic missile defence is provided (part I).