17 resultados para Allergic Rhinitis

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Pru p 3 is the major peach allergen and the most frequent cause of food allergy in adults in the Mediterranean area. Although its allergenicity is well characterized, its ability to generate a T-cell response is not completely known. OBJECTIVE: To investigate the influence of Pru p 3 allergen on dendritic cell (DC) maturation and specific T-cell response (T(H)1/T(H)2) in peach allergic patients. METHODS: Peach allergic patients (n = 11) and tolerant controls (n = 14) were included in the study. Monocyte-derived DC maturation after incubation with Pru p 3 was evaluated by the increase of maturational markers (CD80, CD86, and CD83) by flow cytometry. Lymphocyte proliferation was evaluated by coculturing monocyte-derived DCs and 5,6-carboxyfluorescein diacetate N-succinimidyl ester-stained lymphocytes with different concentrations of Pru p 3 (25, 10, and 1 ?g/mL) by flow cytometry and cytokine production. RESULTS: Pru p 3 induced a significant increase in the CD80, CD86, and CD83 expression on stimulated DCs from patients compared with controls. The lymphocyte proliferative response after Pru p 3 stimulation was also significantly higher along with an increase in interleukin 8 in patients compared with tolerant controls. CONCLUSION: Pru p 3 allergen induces changes in DC maturational status mainly in peach allergic patients. An increase in lymphocyte proliferative response accompanied with a different cytokine pattern was also observed compared with healthy controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Obeche wood dust is a known cause of occupational asthma where an IgE-mediated mechanism has been demonstrated. Objective To characterize the allergenic profile of obeche wood dust and evaluate the reactivity of the proteins by in vitro, ex vivo and in vivo assays in carpenters with confirmed rhinitis and/or asthma Materials and methods An in-house obeche extract was obtained, and two IgE binding bands were purified (24 and 12 kDa) and sequenced by N-terminal identity. Specific IgE and IgG, basophil activation tests and skin prick tests (SPTs) were performed with whole extract and purified proteins. CCD binding was analyzed by ELISA inhibition studies. Results Sixty-two subjects participated: 12 with confirmed occupational asthma/rhinitis (ORA+), 40 asymptomatic exposed (ORA−), and 10 controls. Of the confirmed subjects, 83% had a positive SPT to obeche. There was a 100% recognition by ELISA in symptomatic subjects vs. 30% and 10% in asymptomatic exposed subjects and controls respectively (p<0.05). Two new proteins were purified, a 24 kDa protein identified as a putative thaumatin-like protein and a 12 kDa gamma-expansin. Both showed allergenic activity in vitro, with the putative thaumatin being the most active, with 92% recognition by ELISA and 100% by basophil activation test in ORA+ subjects. Cross-reactivity due to CCD was ruled out in 82% of cases. Conclusions Two proteins of obeche wood were identified and were recognized by a high percentage of symptomatic subjects and by a small proportion of asymptomatic exposed subjects. Further studies are required to evaluate cross reactivity with other plant allergens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergens come into contact with the immune system as components of a very diverse mixture. The most common sources are pollen grains, food, and waste. These sources contain a variety of immunomodulatory components that play a key role in the induction of allergic sensitization. The way allergen molecules bind to the cells of the immune system can determine the immune response. In order to better understand how allergic sensitization is triggered, we review the molecular mechanisms involved in the development of allergy and the role of immunomodulators in allergen recognition by innate cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bakers are repeatedly exposed to wheat flour (WF) and may develop sensitization and occupational rhinoconjunctivitis and/or asthma to WF allergens.1 Several wheat proteins have been identified as causative allergens of occupational respiratory allergy in bakery workers.1 Testing of IgE reactivity in patients with different clinical profiles of wheat allergy (food allergy, wheat-dependent exercise-induced anaphylaxis, and baker's asthma) to salt-soluble and salt-insoluble protein fractions from WF revealed a high degree of heterogeneity in the recognized allergens. However, mainly salt-soluble proteins (albumins, globulins) seem to be associated with baker's asthma, and prolamins (gliadins, glutenins) with wheat-dependent exercise-induced anaphylaxis, whereas both protein fractions reacted to IgE from food-allergic patients.1 Notwithstanding, gliadins have also been incriminated as causative allergens in baker's asthma.2 We report on a 31-year-old woman who had been exposed to WF practically since birth because her family owned a bakery housed in the same home where they lived. She moved from this house when she was 25 years, but she continued working every day in the family bakery. In the last 8 years she had suffered from work-related nasal and ocular symptoms such as itching, watery eyes, sneezing, nasal stuffiness, and rhinorrhea. These symptoms markedly improved when away from work and worsened at work. In the last 5 years, she had also experienced dysphagia with frequent choking, especially when ingesting meats or cephalopods, which had partially improved with omeprazole therapy. Two years before referral to our clinic, she began to have dry cough and breathlessness, which she also attributed to her work environment. Upper and lower respiratory tract symptoms increased when sifting the WF and making the dough. The patient did not experience gastrointestinal symptoms with ingestion of cereal products. Skin prick test results were positive to grass (mean wheal, 6 mm), cypress (5 mm) and Russian thistle pollen (4 mm), WF (4 mm), and peach lipid transfer protein (6 mm) and were negative to rice flour, corn flour, profilin, mites, molds, and animal dander. Skin prick test with a homemade WF extract (10% wt/vol) was strongly positive (15 mm). Serologic tests yielded the following results: eosinophil cationic protein, 47 ?g/L; total serum IgE, 74 kU/L; specific IgE (ImmunoCAP; ThermoFisher, Uppsala, Sweden) to WF, 7.4 kU/L; barley flour, 1.24 kU/L; and corn, gluten, alpha-amylase, peach, and apple, less than 0.35 kU/L. Specific IgE binding to microarrayed purified WF allergens (WDAI-0.19, WDAI-0.53, WTAI-CM1, WTAI-CM2, WTAI-CM3, WTAI-CM16, WTAI-CM17, Tri a 14, profilin, ?-5-gliadin, Tri a Bd 36 and Tri a TLP, and gliadin and glutamine fractions) was assessed as described elsewhere.3 The patient's serum specifically recognized ?-5-gliadin and the gliadin fraction, and no IgE reactivity was observed to other wheat allergens. Spirometry revealed a forced vital capacity of 3.88 L (88%), an FEV1 of 3.04 L (87%), and FEV1/forced vital capacity of 83%. A methacholine inhalation test was performed following an abbreviated protocol,4 and the results were expressed as PD20 in cumulative dose (mg) of methacholine. Methacholine inhalation challenge test result was positive (0.24 mg cumulative dose) when she was working, and after a 3-month period away from work and with no visits to the bakery house, it gave a negative result. A chest x-ray was normal. Specific inhalation challenge test was carried out in the hospital laboratory by tipping WF from one tray to another for 15 minutes. Spirometry was performed at baseline and at 2, 5, 10, 15, 20, 30, 45, and 60 minutes after the challenge with WF. Peak expiratory flow was measured at baseline and then hourly over 24 hours (respecting sleeping time). A 12% fall in FEV1 was observed at 20 minutes and a 26% drop in peak expiratory flow at 9 hours after exposure to WF,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wood is a natural material that is able to trigger rhinitis and asthma in exposed subjects in occupational settings. This has been described with both soft and hard woods.1,2 Involvement of both low- and high-molecular-weight allergens has been reported, and the relevance of these is related with the wood type.1 There are cases where protein may be the responsible allergen. Crossreactivity between obeche and ramin woods3 and between obeche and latex4 has been shown. However, to the best of our knowledge, this is the first report of a multiple IgE-mediated sensitization to different woods that caused occupational respiratory symptoms in the same worker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over 30 wheat allergens have been associated to baker’s asthma and much of them have been also implied in food allergy. Few of them have rendered as major allergens. Tri a 14, wheat LTP, has been associated to baker’s asthma as major allergen in patients that can consume peach and wheat derived foodstuffs. In Spanish baker’s asthma patients, 60% showed positive response to Tri a 14 and 45% to Pru p 3. However, the cross-reactivity between peach and wheat has been unusual in allergic population (1,8). Moreover, wheat allergy is not so often as should be attending to the high consume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La prevalencia de las alergias está aumentando desde mediados del siglo XX, y se estima que actualmente afectan a alrededor del 2-8 % de la población, pero las causas de este aumento aún no están claras. Encontrar el origen del mecanismo por el cual una proteína inofensiva se convierte en capaz de inducir una respuesta alérgica es de vital importancia para prevenir y tratar estas enfermedades. Aunque la caracterización de alérgenos relevantes ha ayudado a mejorar el manejo clínico y a aclarar los mecanismos básicos de las reacciones alérgicas, todavía queda un largo camino para establecer el origen de la alergenicidad y reactividad cruzada. El objetivo de esta tesis ha sido caracterizar las bases moleculares de la alergenicidad tomando como modelo dos familias de panalergenos (proteínas de transferencia de lípidos –LTPs- y taumatinas –TLPs-) y estudiando los mecanismos que median la sensibilización y la reactividad cruzada para mejorar tanto el diagnóstico como el tratamiento de la alergia. Para ello, se llevaron a cabo dos estrategias: estudiar la reactividad cruzada de miembros de familias de panalérgenos; y estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas. Para estudiar la reactividad cruzada entre miembros de la misma familia de proteínas, se seleccionaron LTPs y TLPs, descritas como alergenos, tomando como modelo la alergia a frutas. Por otra parte, se estudiaron los perfiles de sensibilización a alérgenos de trigo relacionados con el asma del panadero, la enfermedad ocupacional más relevante de origen alérgico. Estos estudios se llevaron a cabo estandarizando ensayos tipo microarrays con alérgenos y analizando los resultados por la teoría de grafos. En relación al estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas, se llevaron a cabo estudios sobre la interacción de los alérgenos alimentarios con células del sistema inmune humano y murino y el epitelio de las mucosas, analizando la importancia de moléculas co-transportadas con los alérgenos en el desarrollo de una respuesta Th2. Para ello, Pru p 3(LTP y alérgeno principal del melocotón) se selección como modelo para llevarlo a cabo. Por otra parte, se analizó el papel de moléculas activadoras del sistema inmune producidas por patógenos en la inducción de alergias alimentarias seleccionando el modelo kiwi-alternaria, y el papel de Alt a 1, alérgeno mayor de dicho hongo, en la sensibilización a Act d 2, alérgeno mayor de kiwi. En resumen, el presente trabajo presenta una investigación innovadora aportando resultados de gran utilidad tanto para la mejora del diagnóstico como para nuevas investigaciones sobre la alergia y el esclarecimiento final de los mecanismos que caracterizan esta enfermedad. ABSTRACT Allergies are increasing their prevalence from mid twentieth century, and they are currently estimated to affect around 2-8% of the population but the underlying causes of this increase remain still elusive. The understanding of the mechanism by which a harmless protein becomes capable of inducing an allergic response provides us the basis to prevent and treat these diseases. Although the characterization of relevant allergens has led to improved clinical management and has helped to clarify the basic mechanisms of allergic reactions, it seems justified in aspiring to molecularly dissecting these allergens to establish the structural basis of their allergenicity and cross-reactivity. The aim of this thesis was to characterize the molecular basis of the allergenicity of model proteins belonging to different families (Lipid Transfer Proteins –LTPs-, and Thaumatin-like Proteins –TLPs-) in order to identify mechanisms that mediate sensitization and cross reactivity for developing new strategies in the management of allergy, both diagnosis and treatment, in the near future. With this purpose, two strategies have been conducted: studies of cross-reactivity among panallergen families and molecular studies of the contribution of cofactors in the induction of the allergic response by these panallergens. Following the first strategy, we studied the cross-reactivity among members of two plant panallergens (LTPs , Lipid Transfer Proteins , and TLPs , Thaumatin-like Proteins) using the peach allergy as a model. Similarly, we characterized the sensitization profiles to wheat allergens in baker's asthma development, the most relevant occupational disease. These studies were performed using allergen microarrays and the graph theory for analyzing the results. Regarding the second approach, we analyzed the interaction of plant allergens with immune and epithelial cells. To perform these studies , we examined the importance of ligands and co-transported molecules of plant allergens in the development of Th2 responses. To this end, Pru p 3, nsLTP (non-specific Lipid Transfer Protein) and peach major allergen, was selected as a model to investigate its interaction with cells of the human and murine immune systems as well as with the intestinal epithelium and the contribution of its ligand in inducing an allergic response was studied. Moreover, we analyzed the role of pathogen associated molecules in the induction of food allergy. For that, we selected the kiwi- alternaria system as a model and the role of Alt a 1 , major allergen of the fungus, in the development of Act d 2-sensitization was studied. In summary, this work presents an innovative research providing useful results for improving diagnosis and leading to further research on allergy and the final clarification of the mechanisms that characterize this disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, treatment of food allergy only considered the avoidance of the specific food. However, the possibility of cross-reactivity makes this practice not very effective. Immunotherapy may exhibit as a good alternative to food allergy treatment. The use of hypoallergenic molecules with reduced IgE binding capacity but with ability to stimulate the immune system is a promising tool which could be developed for immunotherapy. In this study, three mutants of Pru p 3, the principal allergen of peach, were produced based on the described mimotope and T cell epitopes, by changing the specific residues to alanine, named as Pru p 3.01, Pru p 3.02, and Pru p 3.03. Pru p 3.01 showed very similar allergenic activity as the wild type by in vitro assays. However, Pru p 3.02 and Pru p 3.03 presented reduced IgE binding with respect to the native form, by in vitro, ex vivo, and in vivo assays. In addition, Pru p 3.03 had affected the IgG4 binding capacity and presented a random circular dichroism, which was reflected in the nonrecognition by specific antibodies anti-Pru p 3. Nevertheless, both Pru p 3.02 and Pru p 3.03 maintained the binding to IgG1 and their ability to activate T lymphocytes. Thus, Pru p 3.02 and Pru p 3.03 could be good candidates for potential immunotherapy in peach-allergic patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grain-induced asthma is a frequent occupational allergic disease mainly caused by inhalation of cereal flour or powder. The main professions affected are bakers, confectioners, pastry factory workers, millers, farmers, and cereal handlers. This disorder is usually due to an IgE-mediated allergic response to inhalation of cereal flour proteins. The major causative allergens of grain-related asthma are proteins derived from wheat, rye and barley flour, although baking additives, such as fungal α-amylase are also important. This review deals with the current diagnosis and treatment of grain-induced asthma, emphasizing the role of cereal allergens as molecular tools to enhance diagnosis and management of this disorder. Asthma-like symptoms caused by endotoxin exposure among grain workers are beyond the scope of this review. Progress is being made in the characterization of grain and bakery allergens, particularly cereal-derived allergens, as well as in the standardization of allergy tests. Salt-soluble proteins (albumins plus globulins), particularly members of the α-amylase/trypsin inhibitor family, thioredoxins, peroxidase, lipid transfer protein and other soluble enzymes show the strongest IgE reactivities in wheat flour. In addition, prolamins (not extractable by salt solutions) have also been claimed as potential allergens. However, the large variability of IgE-binding patterns of cereal proteins among patients with grain-induced asthma, together with the great differences in the concentrations of potential allergens observed in commercial cereal extracts used for diagnosis, highlight the necessity to standardize and improve the diagnostic tools. Removal from exposure to the offending agents is the cornerstone of the management of grain-induced asthma. The availability of purified allergens should be very helpful for a more refined diagnosis, and new immunomodulatory treatments, including allergen immunotherapy and biological drugs, should aid in the management of patients with this disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scope: Today, about 2–8% of the population of Western countries exhibits some type of food allergy whose impact ranges from localized symptoms confined to the oral mucosa to severe anaphylactic reactions. Consumed worldwide, lettuce is a Compositae family vegetable that can elicit allergic reactions. To date, however, only one lipid transfer protein has been described in allergic reaction to lettuce. The aim of this study was to identify potential new allergens involved in lettuce allergy. Methods and results: Sera from 42 Spanish lettuce-allergic patients were obtained from pa-tients recruited at the outpatient clinic. IgE-binding proteins were detected by SDS-PAGE and immunoblotting. Molecular characterization of IgE-binding bands was performed by MS. Thaumatin was purified using the Agilent 3100 OFFGEL system. The IgE-binding bands recognized in the sera of more than 50% of patients were identified as lipid transfer protein (9 kDa), a thaumatin-like protein (26 kDa), and an aspartyl protease (35 and 45 kDa). ELISA inhibition studies were performed to confirm the IgE reactivity of the purified allergen. Conclusion: Two new major lettuce allergens—a thaumatin-like protein and an aspartyl protease—have been identified and characterized. These allergens may be used to improve both diagnosis and treatment of lettuce-allergic patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Since intestinal absorption of food protein can trigger an allergic reaction, the effect of plant food allergen on intestinal epithelial cell permeability and its ability to cross the epithelial monolayer was evaluated. Objective To study the interaction of Pru p 3 with intestinal epithelium, its natural entrance, analyzing transport kinetics and cellular responses that trigger. Methods This was achieved using Pru p 3, the peach LTP, as a model. Enterocytic monolayers were established by culturing Caco 2 cells, as a model of enterocytes, on permeable supports that separate the apical and basal compartments. Pru p 3 was added to the apical compartment, the transepithelial resistance (TEER) was measured, and the transport was quantified. Results The peach allergen that crossed the cell monolayer was detected in the cell fraction and in the basal medium by immunodetection with specific antibodies and the quantity was measured by ELISA assay. Pru p 3 was able to cross the monolayer without disturbing the integrity of the tight junctions. This transport was significantly higher than that of a non-allergenic peach LTP, LTP1, and occurred via lipid raft pathway. The incubation of Caco 2 cells with Pru p 3 and LTP1 produced the expression of epithelial-specific cytokines TSLP, IL33 and IL25. Conclusion These results suggest that Pru p 3 was able to cross the cell monolayer by the transcellular route and then induce the production of Th2 cytokines. The results of the present study represent a step towards clarifying the importance of Pru p 3 as a sensitizer. Clinical relevance The capacity of food allergens to cross the intestinal monolayer could explain their high allergenic capacity and its fast diffusion through the body associating to severe symptoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prevalence of exotic pet allergies has been increasing over the last decade. Years ago, the main allergy-causing domestic animals were dogs and cats, although nowadays there is an increasing number of allergic diseases related to insects, rodents, amphibians, fish, and birds, among others. The current socio-economic situation, in which more and more people have to live in small apartments, might be related to this tendency. The main allergic symptoms related to exotic pets are the same as those described for dog and cat allergy: respiratory symptoms. Animal allergens are therefore, important sensitizing agents and an important risk factor for asthma. There are three main protein families implicated in these allergies, which are the lipocalin superfamily, serum albumin family, and secretoglobin superfamily. Detailed knowledge of the characteristics of allergens is crucial to improvement treatment of uncommon-pet allergies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alt a 1 is a protein found in Alternaria alternata spores related to virulence and pathogenicity and considered to be responsible for chronic asthma in children. We found that spores of Alternaria inoculated on the outer surface of kiwifruits did not develop hyphae. Nevertheless, the expression of Alt a 1 gene was upregulated, and the protein was detected in the pulp where it co-localized with kiwi PR5. Pull-down assays demonstrated experimentally that the two proteins interact in such a way that Alt a 1 inhibits the enzymatic activity of PR5. These results are relevant not only for plant defense, but also for human health as patients with chronic asthma could suffer from an allergic reaction when they eat fruit contaminated with Alternaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Component-based diagnosis on multiplex platforms is widely used in food allergy but its clinical performance has not been evaluated in nut allergy. Objective: To assess the diagnostic performance of a commercial protein microarray in the determination of specific IgE (sIgE) in peanut, hazelnut, and walnut allergy. Methods: sIgE was measured in 36 peanut-allergic, 36 hazelnut-allergic, and 44 walnut-allergic patients by ISAC 112, and subsequently, sIgE against available components was determined by ImmunoCAP in patients with negative ISAC results. ImmunoCAP was also used to measure sIgE to Ara h 9, Cor a 8, and Jug r 3 in a subgroup of lipid transfer protein (LTP)-sensitized nut-allergic patients (positive skin prick test to LTP-enriched extract). sIgE levels by ImmunoCAP were compared with ISAC ranges. Results: Most peanut-, hazelnut-, and walnut-allergic patients were sensitized to the corresponding nut LTP (Ara h 9, 66.7%; Cor a 8, 80.5%; Jug r 3, 84% respectively). However, ISAC did not detect sIgE in 33.3% of peanut-allergic patients, 13.9% of hazelnut-allergic patients, or 13.6% of walnut-allergic patients. sIgE determination by ImmunoCAP detected sensitization to Ara h 9, Cor a 8, and Jug r 3 in, respectively, 61.5% of peanut-allergic patients, 60% of hazelnut-allergic patients, and 88.3% of walnut-allergic patients with negative ISAC results. In the subgroup of peach LTP?sensitized patients, Ara h 9 sIgE was detected in more cases by ImmunoCAP than by ISAC (94.4% vs 72.2%, P<.05). Similar rates of Cor a 8 and Jug r 3 sensitization were detected by both techniques. Conclusions: The diagnostic performance of ISAC was adequate for hazelnut and walnut allergy but not for peanut allergy. sIgE sensitivity against Ara h 9 in ISAC needs to be improved.