14 resultados para Algorithms - Data processing
em Universidad Politécnica de Madrid
Resumo:
PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.
Resumo:
Nowadays, devices that monitor the health of structures consume a lot of power and need a lot of time to acquire, process, and send the information about the structure to the main processing unit. To decrease this time, fast electronic devices are starting to be used to accelerate this processing. In this paper some hardware algorithms implemented in an electronic logic programming device are described. The goal of this implementation is accelerate the process and diminish the information that has to be send. By reaching this goal, the time the processor needs for treating all the information is reduced and so the power consumption is reduced too.
Resumo:
In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described.
Resumo:
Due to the advancement of both, information technology in general, and databases in particular; data storage devices are becoming cheaper and data processing speed is increasing. As result of this, organizations tend to store large volumes of data holding great potential information. Decision Support Systems, DSS try to use the stored data to obtain valuable information for organizations. In this paper, we use both data models and use cases to represent the functionality of data processing in DSS following Software Engineering processes. We propose a methodology to develop DSS in the Analysis phase, respective of data processing modeling. We have used, as a starting point, a data model adapted to the semantics involved in multidimensional databases or data warehouses, DW. Also, we have taken an algorithm that provides us with all the possible ways to automatically cross check multidimensional model data. Using the aforementioned, we propose diagrams and descriptions of use cases, which can be considered as patterns representing the DSS functionality, in regard to DW data processing, DW on which DSS are based. We highlight the reusability and automation benefits that this can be achieved, and we think this study can serve as a guide in the development of DSS.
Resumo:
Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document. Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document.
Resumo:
Multi-user videoconferencing systems offer communication between more than two users, who are able to interact through their webcams, microphones and other components. The use of these systems has been increased recently due to, on the one hand, improvements in Internet access, networks of companies, universities and houses, whose available bandwidth has been increased whilst the delay in sending and receiving packets has decreased. On the other hand, the advent of Rich Internet Applications (RIA) means that a large part of web application logic and control has started to be implemented on the web browsers. This has allowed developers to create web applications with a level of complexity comparable to traditional desktop applications, running on top of the Operating Systems. More recently the use of Cloud Computing systems has improved application scalability and involves a reduction in the price of backend systems. This offers the possibility of implementing web services on the Internet with no need to spend a lot of money when deploying infrastructures and resources, both hardware and software. Nevertheless there are not many initiatives that aim to implement videoconferencing systems taking advantage of Cloud systems. This dissertation proposes a set of techniques, interfaces and algorithms for the implementation of videoconferencing systems in public and private Cloud Computing infrastructures. The mechanisms proposed here are based on the implementation of a basic videoconferencing system that runs on the web browser without any previous installation requirements. To this end, the development of this thesis starts from a RIA application with current technologies that allow users to access their webcams and microphones from the browser, and to send captured data through their Internet connections. Furthermore interfaces have been implemented to allow end users to participate in videoconferencing rooms that are managed in different Cloud provider servers. To do so this dissertation starts from the results obtained from the previous techniques and backend resources were implemented in the Cloud. A traditional videoconferencing service which was implemented in the department was modified to meet typical Cloud Computing infrastructure requirements. This allowed us to validate whether Cloud Computing public infrastructures are suitable for the traffic generated by this kind of system. This analysis focused on the network level and processing capacity and stability of the Cloud Computing systems. In order to improve this validation several other general considerations were taken in order to cover more cases, such as multimedia data processing in the Cloud, as research activity has increased in this area in recent years. The last stage of this dissertation is the design of a new methodology to implement these kinds of applications in hybrid clouds reducing the cost of videoconferencing systems. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this study, resulting in useful information from the different stages of the implementation of videoconferencing systems in Cloud Computing systems. RESUMEN Los sistemas de videoconferencia multiusuario permiten la comunicación entre más de dos usuarios que pueden interactuar a través de cámaras de video, micrófonos y otros elementos. En los últimos años el uso de estos sistemas se ha visto incrementado gracias, por un lado, a la mejora de las redes de acceso en las conexiones a Internet en empresas, universidades y viviendas, que han visto un aumento del ancho de banda disponible en dichas conexiones y una disminución en el retardo experimentado por los datos enviados y recibidos. Por otro lado también ayudó la aparación de las Aplicaciones Ricas de Internet (RIA) con las que gran parte de la lógica y del control de las aplicaciones web comenzó a ejecutarse en los mismos navegadores. Esto permitió a los desarrolladores la creación de aplicaciones web cuya complejidad podía compararse con la de las tradicionales aplicaciones de escritorio, ejecutadas directamente por los sistemas operativos. Más recientemente el uso de sistemas de Cloud Computing ha mejorado la escalabilidad y el abaratamiento de los costes para sistemas de backend, ofreciendo la posibilidad de implementar servicios Web en Internet sin la necesidad de grandes desembolsos iniciales en las áreas de infraestructuras y recursos tanto hardware como software. Sin embargo no existen aún muchas iniciativas con el objetivo de realizar sistemas de videoconferencia que aprovechen las ventajas del Cloud. Esta tesis doctoral propone un conjunto de técnicas, interfaces y algoritmos para la implentación de sistemas de videoconferencia en infraestructuras tanto públicas como privadas de Cloud Computing. Las técnicas propuestas en la tesis se basan en la realización de un servicio básico de videoconferencia que se ejecuta directamente en el navegador sin la necesidad de instalar ningún tipo de aplicación de escritorio. Para ello el desarrollo de esta tesis parte de una aplicación RIA con tecnologías que hoy en día permiten acceder a la cámara y al micrófono directamente desde el navegador, y enviar los datos que capturan a través de la conexión de Internet. Además se han implementado interfaces que permiten a usuarios finales la participación en salas de videoconferencia que se ejecutan en servidores de proveedores de Cloud. Para ello se partió de los resultados obtenidos en las técnicas anteriores de ejecución de aplicaciones en el navegador y se implementaron los recursos de backend en la nube. Además se modificó un servicio ya existente implementado en el departamento para adaptarlo a los requisitos típicos de las infraestructuras de Cloud Computing. Alcanzado este punto se procedió a analizar si las infraestructuras propias de los proveedores públicos de Cloud Computing podrían soportar el tráfico generado por los sistemas que se habían adaptado. Este análisis se centró tanto a nivel de red como a nivel de capacidad de procesamiento y estabilidad de los sistemas. Para los pasos de análisis y validación de los sistemas Cloud se tomaron consideraciones más generales para abarcar casos como el procesamiento de datos multimedia en la nube, campo en el que comienza a haber bastante investigación en los últimos años. Como último paso se ideó una metodología de implementación de este tipo de aplicaciones para que fuera posible abaratar los costes de los sistemas de videoconferencia haciendo uso de clouds híbridos. Finalmente en la tesis se abre una discusión sobre las conclusiones obtenidas a lo largo de este amplio estudio, obteniendo resultados útiles en las distintas etapas de implementación de los sistemas de videoconferencia en la nube.
Resumo:
This paper reports on an innovative approach that aims to reduce information management costs in data-intensive and cognitively-complex biomedical environments. Recognizing the importance of prominent high-performance computing paradigms and large data processing technologies as well as collaboration support systems to remedy data-intensive issues, it adopts a hybrid approach by building on the synergy of these technologies. The proposed approach provides innovative Web-based workbenches that integrate and orchestrate a set of interoperable services that reduce the data-intensiveness and complexity overload at critical decision points to a manageable level, thus permitting stakeholders to be more productive and concentrate on creative activities.
Resumo:
A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.
Resumo:
The integration of correlation processes in design systems has as a target measurements in 3D directly and according to the users criteria in order to generate the required database for the development of the project. In the phase of photogrammetric works, internal and external orientation parameters are calculated and stereo models are created from standard images. The aforementioned are integrated in the system where the measurement of the selected items is done by applying developed correlation algorithms. The processing period has the tools to carry out the calculations in an easy and automatic way, as well as image measurement techniques to acquire the most correct information. The proposed software development is done on Visual Studio platforms for PC, applying the most apt codes and symbols according to the terms of reference required for the design. The results of generating the data base in an interactive way with the geometric study of the structures, facilitates and improves the quality of the works in the projects.
Resumo:
Los avances en el hardware permiten disponer de grandes volúmenes de datos, surgiendo aplicaciones que deben suministrar información en tiempo cuasi-real, la monitorización de pacientes, ej., el seguimiento sanitario de las conducciones de agua, etc. Las necesidades de estas aplicaciones hacen emerger el modelo de flujo de datos (data streaming) frente al modelo almacenar-para-despuésprocesar (store-then-process). Mientras que en el modelo store-then-process, los datos son almacenados para ser posteriormente consultados; en los sistemas de streaming, los datos son procesados a su llegada al sistema, produciendo respuestas continuas sin llegar a almacenarse. Esta nueva visión impone desafíos para el procesamiento de datos al vuelo: 1) las respuestas deben producirse de manera continua cada vez que nuevos datos llegan al sistema; 2) los datos son accedidos solo una vez y, generalmente, no son almacenados en su totalidad; y 3) el tiempo de procesamiento por dato para producir una respuesta debe ser bajo. Aunque existen dos modelos para el cómputo de respuestas continuas, el modelo evolutivo y el de ventana deslizante; éste segundo se ajusta mejor en ciertas aplicaciones al considerar únicamente los datos recibidos más recientemente, en lugar de todo el histórico de datos. En los últimos años, la minería de datos en streaming se ha centrado en el modelo evolutivo. Mientras que, en el modelo de ventana deslizante, el trabajo presentado es más reducido ya que estos algoritmos no sólo deben de ser incrementales si no que deben borrar la información que caduca por el deslizamiento de la ventana manteniendo los anteriores tres desafíos. Una de las tareas fundamentales en minería de datos es la búsqueda de agrupaciones donde, dado un conjunto de datos, el objetivo es encontrar grupos representativos, de manera que se tenga una descripción sintética del conjunto. Estas agrupaciones son fundamentales en aplicaciones como la detección de intrusos en la red o la segmentación de clientes en el marketing y la publicidad. Debido a las cantidades masivas de datos que deben procesarse en este tipo de aplicaciones (millones de eventos por segundo), las soluciones centralizadas puede ser incapaz de hacer frente a las restricciones de tiempo de procesamiento, por lo que deben recurrir a descartar datos durante los picos de carga. Para evitar esta perdida de datos, se impone el procesamiento distribuido de streams, en concreto, los algoritmos de agrupamiento deben ser adaptados para este tipo de entornos, en los que los datos están distribuidos. En streaming, la investigación no solo se centra en el diseño para tareas generales, como la agrupación, sino también en la búsqueda de nuevos enfoques que se adapten mejor a escenarios particulares. Como ejemplo, un mecanismo de agrupación ad-hoc resulta ser más adecuado para la defensa contra la denegación de servicio distribuida (Distributed Denial of Services, DDoS) que el problema tradicional de k-medias. En esta tesis se pretende contribuir en el problema agrupamiento en streaming tanto en entornos centralizados y distribuidos. Hemos diseñado un algoritmo centralizado de clustering mostrando las capacidades para descubrir agrupaciones de alta calidad en bajo tiempo frente a otras soluciones del estado del arte, en una amplia evaluación. Además, se ha trabajado sobre una estructura que reduce notablemente el espacio de memoria necesario, controlando, en todo momento, el error de los cómputos. Nuestro trabajo también proporciona dos protocolos de distribución del cómputo de agrupaciones. Se han analizado dos características fundamentales: el impacto sobre la calidad del clustering al realizar el cómputo distribuido y las condiciones necesarias para la reducción del tiempo de procesamiento frente a la solución centralizada. Finalmente, hemos desarrollado un entorno para la detección de ataques DDoS basado en agrupaciones. En este último caso, se ha caracterizado el tipo de ataques detectados y se ha desarrollado una evaluación sobre la eficiencia y eficacia de la mitigación del impacto del ataque. ABSTRACT Advances in hardware allow to collect huge volumes of data emerging applications that must provide information in near-real time, e.g., patient monitoring, health monitoring of water pipes, etc. The data streaming model emerges to comply with these applications overcoming the traditional store-then-process model. With the store-then-process model, data is stored before being consulted; while, in streaming, data are processed on the fly producing continuous responses. The challenges of streaming for processing data on the fly are the following: 1) responses must be produced continuously whenever new data arrives in the system; 2) data is accessed only once and is generally not maintained in its entirety, and 3) data processing time to produce a response should be low. Two models exist to compute continuous responses: the evolving model and the sliding window model; the latter fits best with applications must be computed over the most recently data rather than all the previous data. In recent years, research in the context of data stream mining has focused mainly on the evolving model. In the sliding window model, the work presented is smaller since these algorithms must be incremental and they must delete the information which expires when the window slides. Clustering is one of the fundamental techniques of data mining and is used to analyze data sets in order to find representative groups that provide a concise description of the data being processed. Clustering is critical in applications such as network intrusion detection or customer segmentation in marketing and advertising. Due to the huge amount of data that must be processed by such applications (up to millions of events per second), centralized solutions are usually unable to cope with timing restrictions and recur to shedding techniques where data is discarded during load peaks. To avoid discarding of data, processing of streams (such as clustering) must be distributed and adapted to environments where information is distributed. In streaming, research does not only focus on designing for general tasks, such as clustering, but also in finding new approaches that fit bests with particular scenarios. As an example, an ad-hoc grouping mechanism turns out to be more adequate than k-means for defense against Distributed Denial of Service (DDoS). This thesis contributes to the data stream mining clustering technique both for centralized and distributed environments. We present a centralized clustering algorithm showing capabilities to discover clusters of high quality in low time and we provide a comparison with existing state of the art solutions. We have worked on a data structure that significantly reduces memory requirements while controlling the error of the clusters statistics. We also provide two distributed clustering protocols. We focus on the analysis of two key features: the impact on the clustering quality when computation is distributed and the requirements for reducing the processing time compared to the centralized solution. Finally, with respect to ad-hoc grouping techniques, we have developed a DDoS detection framework based on clustering.We have characterized the attacks detected and we have evaluated the efficiency and effectiveness of mitigating the attack impact.
Resumo:
La optimización de parámetros tales como el consumo de potencia, la cantidad de recursos lógicos empleados o la ocupación de memoria ha sido siempre una de las preocupaciones principales a la hora de diseñar sistemas embebidos. Esto es debido a que se trata de sistemas dotados de una cantidad de recursos limitados, y que han sido tradicionalmente empleados para un propósito específico, que permanece invariable a lo largo de toda la vida útil del sistema. Sin embargo, el uso de sistemas embebidos se ha extendido a áreas de aplicación fuera de su ámbito tradicional, caracterizadas por una mayor demanda computacional. Así, por ejemplo, algunos de estos sistemas deben llevar a cabo un intenso procesado de señales multimedia o la transmisión de datos mediante sistemas de comunicaciones de alta capacidad. Por otra parte, las condiciones de operación del sistema pueden variar en tiempo real. Esto sucede, por ejemplo, si su funcionamiento depende de datos medidos por el propio sistema o recibidos a través de la red, de las demandas del usuario en cada momento, o de condiciones internas del propio dispositivo, tales como la duración de la batería. Como consecuencia de la existencia de requisitos de operación dinámicos es necesario ir hacia una gestión dinámica de los recursos del sistema. Si bien el software es inherentemente flexible, no ofrece una potencia computacional tan alta como el hardware. Por lo tanto, el hardware reconfigurable aparece como una solución adecuada para tratar con mayor flexibilidad los requisitos variables dinámicamente en sistemas con alta demanda computacional. La flexibilidad y adaptabilidad del hardware requieren de dispositivos reconfigurables que permitan la modificación de su funcionalidad bajo demanda. En esta tesis se han seleccionado las FPGAs (Field Programmable Gate Arrays) como los dispositivos más apropiados, hoy en día, para implementar sistemas basados en hardware reconfigurable De entre todas las posibilidades existentes para explotar la capacidad de reconfiguración de las FPGAs comerciales, se ha seleccionado la reconfiguración dinámica y parcial. Esta técnica consiste en substituir una parte de la lógica del dispositivo, mientras el resto continúa en funcionamiento. La capacidad de reconfiguración dinámica y parcial de las FPGAs es empleada en esta tesis para tratar con los requisitos de flexibilidad y de capacidad computacional que demandan los dispositivos embebidos. La propuesta principal de esta tesis doctoral es el uso de arquitecturas de procesamiento escalables espacialmente, que son capaces de adaptar su funcionalidad y rendimiento en tiempo real, estableciendo un compromiso entre dichos parámetros y la cantidad de lógica que ocupan en el dispositivo. A esto nos referimos con arquitecturas con huellas escalables. En particular, se propone el uso de arquitecturas altamente paralelas, modulares, regulares y con una alta localidad en sus comunicaciones, para este propósito. El tamaño de dichas arquitecturas puede ser modificado mediante la adición o eliminación de algunos de los módulos que las componen, tanto en una dimensión como en dos. Esta estrategia permite implementar soluciones escalables, sin tener que contar con una versión de las mismas para cada uno de los tamaños posibles de la arquitectura. De esta manera se reduce significativamente el tiempo necesario para modificar su tamaño, así como la cantidad de memoria necesaria para almacenar todos los archivos de configuración. En lugar de proponer arquitecturas para aplicaciones específicas, se ha optado por patrones de procesamiento genéricos, que pueden ser ajustados para solucionar distintos problemas en el estado del arte. A este respecto, se proponen patrones basados en esquemas sistólicos, así como de tipo wavefront. Con el objeto de poder ofrecer una solución integral, se han tratado otros aspectos relacionados con el diseño y el funcionamiento de las arquitecturas, tales como el control del proceso de reconfiguración de la FPGA, la integración de las arquitecturas en el resto del sistema, así como las técnicas necesarias para su implementación. Por lo que respecta a la implementación, se han tratado distintos aspectos de bajo nivel dependientes del dispositivo. Algunas de las propuestas realizadas a este respecto en la presente tesis doctoral son un router que es capaz de garantizar el correcto rutado de los módulos reconfigurables dentro del área destinada para ellos, así como una estrategia para la comunicación entre módulos que no introduce ningún retardo ni necesita emplear recursos configurables del dispositivo. El flujo de diseño propuesto se ha automatizado mediante una herramienta denominada DREAMS. La herramienta se encarga de la modificación de las netlists correspondientes a cada uno de los módulos reconfigurables del sistema, y que han sido generadas previamente mediante herramientas comerciales. Por lo tanto, el flujo propuesto se entiende como una etapa de post-procesamiento, que adapta esas netlists a los requisitos de la reconfiguración dinámica y parcial. Dicha modificación la lleva a cabo la herramienta de una forma completamente automática, por lo que la productividad del proceso de diseño aumenta de forma evidente. Para facilitar dicho proceso, se ha dotado a la herramienta de una interfaz gráfica. El flujo de diseño propuesto, y la herramienta que lo soporta, tienen características específicas para abordar el diseño de las arquitecturas dinámicamente escalables propuestas en esta tesis. Entre ellas está el soporte para el realojamiento de módulos reconfigurables en posiciones del dispositivo distintas a donde el módulo es originalmente implementado, así como la generación de estructuras de comunicación compatibles con la simetría de la arquitectura. El router has sido empleado también en esta tesis para obtener un rutado simétrico entre nets equivalentes. Dicha posibilidad ha sido explotada para aumentar la protección de circuitos con altos requisitos de seguridad, frente a ataques de canal lateral, mediante la implantación de lógica complementaria con rutado idéntico. Para controlar el proceso de reconfiguración de la FPGA, se propone en esta tesis un motor de reconfiguración especialmente adaptado a los requisitos de las arquitecturas dinámicamente escalables. Además de controlar el puerto de reconfiguración, el motor de reconfiguración ha sido dotado de la capacidad de realojar módulos reconfigurables en posiciones arbitrarias del dispositivo, en tiempo real. De esta forma, basta con generar un único bitstream por cada módulo reconfigurable del sistema, independientemente de la posición donde va a ser finalmente reconfigurado. La estrategia seguida para implementar el proceso de realojamiento de módulos es diferente de las propuestas existentes en el estado del arte, pues consiste en la composición de los archivos de configuración en tiempo real. De esta forma se consigue aumentar la velocidad del proceso, mientras que se reduce la longitud de los archivos de configuración parciales a almacenar en el sistema. El motor de reconfiguración soporta módulos reconfigurables con una altura menor que la altura de una región de reloj del dispositivo. Internamente, el motor se encarga de la combinación de los frames que describen el nuevo módulo, con la configuración existente en el dispositivo previamente. El escalado de las arquitecturas de procesamiento propuestas en esta tesis también se puede beneficiar de este mecanismo. Se ha incorporado también un acceso directo a una memoria externa donde se pueden almacenar bitstreams parciales. Para acelerar el proceso de reconfiguración se ha hecho funcionar el ICAP por encima de la máxima frecuencia de reloj aconsejada por el fabricante. Así, en el caso de Virtex-5, aunque la máxima frecuencia del reloj deberían ser 100 MHz, se ha conseguido hacer funcionar el puerto de reconfiguración a frecuencias de operación de hasta 250 MHz, incluyendo el proceso de realojamiento en tiempo real. Se ha previsto la posibilidad de portar el motor de reconfiguración a futuras familias de FPGAs. Por otro lado, el motor de reconfiguración se puede emplear para inyectar fallos en el propio dispositivo hardware, y así ser capaces de evaluar la tolerancia ante los mismos que ofrecen las arquitecturas reconfigurables. Los fallos son emulados mediante la generación de archivos de configuración a los que intencionadamente se les ha introducido un error, de forma que se modifica su funcionalidad. Con el objetivo de comprobar la validez y los beneficios de las arquitecturas propuestas en esta tesis, se han seguido dos líneas principales de aplicación. En primer lugar, se propone su uso como parte de una plataforma adaptativa basada en hardware evolutivo, con capacidad de escalabilidad, adaptabilidad y recuperación ante fallos. En segundo lugar, se ha desarrollado un deblocking filter escalable, adaptado a la codificación de vídeo escalable, como ejemplo de aplicación de las arquitecturas de tipo wavefront propuestas. El hardware evolutivo consiste en el uso de algoritmos evolutivos para diseñar hardware de forma autónoma, explotando la flexibilidad que ofrecen los dispositivos reconfigurables. En este caso, los elementos de procesamiento que componen la arquitectura son seleccionados de una biblioteca de elementos presintetizados, de acuerdo con las decisiones tomadas por el algoritmo evolutivo, en lugar de definir la configuración de las mismas en tiempo de diseño. De esta manera, la configuración del core puede cambiar cuando lo hacen las condiciones del entorno, en tiempo real, por lo que se consigue un control autónomo del proceso de reconfiguración dinámico. Así, el sistema es capaz de optimizar, de forma autónoma, su propia configuración. El hardware evolutivo tiene una capacidad inherente de auto-reparación. Se ha probado que las arquitecturas evolutivas propuestas en esta tesis son tolerantes ante fallos, tanto transitorios, como permanentes y acumulativos. La plataforma evolutiva se ha empleado para implementar filtros de eliminación de ruido. La escalabilidad también ha sido aprovechada en esta aplicación. Las arquitecturas evolutivas escalables permiten la adaptación autónoma de los cores de procesamiento ante fluctuaciones en la cantidad de recursos disponibles en el sistema. Por lo tanto, constituyen un ejemplo de escalabilidad dinámica para conseguir un determinado nivel de calidad, que puede variar en tiempo real. Se han propuesto dos variantes de sistemas escalables evolutivos. El primero consiste en un único core de procesamiento evolutivo, mientras que el segundo está formado por un número variable de arrays de procesamiento. La codificación de vídeo escalable, a diferencia de los codecs no escalables, permite la decodificación de secuencias de vídeo con diferentes niveles de calidad, de resolución temporal o de resolución espacial, descartando la información no deseada. Existen distintos algoritmos que soportan esta característica. En particular, se va a emplear el estándar Scalable Video Coding (SVC), que ha sido propuesto como una extensión de H.264/AVC, ya que este último es ampliamente utilizado tanto en la industria, como a nivel de investigación. Para poder explotar toda la flexibilidad que ofrece el estándar, hay que permitir la adaptación de las características del decodificador en tiempo real. El uso de las arquitecturas dinámicamente escalables es propuesto en esta tesis con este objetivo. El deblocking filter es un algoritmo que tiene como objetivo la mejora de la percepción visual de la imagen reconstruida, mediante el suavizado de los "artefactos" de bloque generados en el lazo del codificador. Se trata de una de las tareas más intensivas en procesamiento de datos de H.264/AVC y de SVC, y además, su carga computacional es altamente dependiente del nivel de escalabilidad seleccionado en el decodificador. Por lo tanto, el deblocking filter ha sido seleccionado como prueba de concepto de la aplicación de las arquitecturas dinámicamente escalables para la compresión de video. La arquitectura propuesta permite añadir o eliminar unidades de computación, siguiendo un esquema de tipo wavefront. La arquitectura ha sido propuesta conjuntamente con un esquema de procesamiento en paralelo del deblocking filter a nivel de macrobloque, de tal forma que cuando se varía del tamaño de la arquitectura, el orden de filtrado de los macrobloques varia de la misma manera. El patrón propuesto se basa en la división del procesamiento de cada macrobloque en dos etapas independientes, que se corresponden con el filtrado horizontal y vertical de los bloques dentro del macrobloque. Las principales contribuciones originales de esta tesis son las siguientes: - El uso de arquitecturas altamente regulares, modulares, paralelas y con una intensa localidad en sus comunicaciones, para implementar cores de procesamiento dinámicamente reconfigurables. - El uso de arquitecturas bidimensionales, en forma de malla, para construir arquitecturas dinámicamente escalables, con una huella escalable. De esta forma, las arquitecturas permiten establecer un compromiso entre el área que ocupan en el dispositivo, y las prestaciones que ofrecen en cada momento. Se proponen plantillas de procesamiento genéricas, de tipo sistólico o wavefront, que pueden ser adaptadas a distintos problemas de procesamiento. - Un flujo de diseño y una herramienta que lo soporta, para el diseño de sistemas reconfigurables dinámicamente, centradas en el diseño de las arquitecturas altamente paralelas, modulares y regulares propuestas en esta tesis. - Un esquema de comunicaciones entre módulos reconfigurables que no introduce ningún retardo ni requiere el uso de recursos lógicos propios. - Un router flexible, capaz de resolver los conflictos de rutado asociados con el diseño de sistemas reconfigurables dinámicamente. - Un algoritmo de optimización para sistemas formados por múltiples cores escalables que optimice, mediante un algoritmo genético, los parámetros de dicho sistema. Se basa en un modelo conocido como el problema de la mochila. - Un motor de reconfiguración adaptado a los requisitos de las arquitecturas altamente regulares y modulares. Combina una alta velocidad de reconfiguración, con la capacidad de realojar módulos en tiempo real, incluyendo el soporte para la reconfiguración de regiones que ocupan menos que una región de reloj, así como la réplica de un módulo reconfigurable en múltiples posiciones del dispositivo. - Un mecanismo de inyección de fallos que, empleando el motor de reconfiguración del sistema, permite evaluar los efectos de fallos permanentes y transitorios en arquitecturas reconfigurables. - La demostración de las posibilidades de las arquitecturas propuestas en esta tesis para la implementación de sistemas de hardware evolutivos, con una alta capacidad de procesamiento de datos. - La implementación de sistemas de hardware evolutivo escalables, que son capaces de tratar con la fluctuación de la cantidad de recursos disponibles en el sistema, de una forma autónoma. - Una estrategia de procesamiento en paralelo para el deblocking filter compatible con los estándares H.264/AVC y SVC que reduce el número de ciclos de macrobloque necesarios para procesar un frame de video. - Una arquitectura dinámicamente escalable que permite la implementación de un nuevo deblocking filter, totalmente compatible con los estándares H.264/AVC y SVC, que explota el paralelismo a nivel de macrobloque. El presente documento se organiza en siete capítulos. En el primero se ofrece una introducción al marco tecnológico de esta tesis, especialmente centrado en la reconfiguración dinámica y parcial de FPGAs. También se motiva la necesidad de las arquitecturas dinámicamente escalables propuestas en esta tesis. En el capítulo 2 se describen las arquitecturas dinámicamente escalables. Dicha descripción incluye la mayor parte de las aportaciones a nivel arquitectural realizadas en esta tesis. Por su parte, el flujo de diseño adaptado a dichas arquitecturas se propone en el capítulo 3. El motor de reconfiguración se propone en el 4, mientras que el uso de dichas arquitecturas para implementar sistemas de hardware evolutivo se aborda en el 5. El deblocking filter escalable se describe en el 6, mientras que las conclusiones finales de esta tesis, así como la descripción del trabajo futuro, son abordadas en el capítulo 7. ABSTRACT The optimization of system parameters, such as power dissipation, the amount of hardware resources and the memory footprint, has been always a main concern when dealing with the design of resource-constrained embedded systems. This situation is even more demanding nowadays. Embedded systems cannot anymore be considered only as specific-purpose computers, designed for a particular functionality that remains unchanged during their lifetime. Differently, embedded systems are now required to deal with more demanding and complex functions, such as multimedia data processing and high-throughput connectivity. In addition, system operation may depend on external data, the user requirements or internal variables of the system, such as the battery life-time. All these conditions may vary at run-time, leading to adaptive scenarios. As a consequence of both the growing computational complexity and the existence of dynamic requirements, dynamic resource management techniques for embedded systems are needed. Software is inherently flexible, but it cannot meet the computing power offered by hardware solutions. Therefore, reconfigurable hardware emerges as a suitable technology to deal with the run-time variable requirements of complex embedded systems. Adaptive hardware requires the use of reconfigurable devices, where its functionality can be modified on demand. In this thesis, Field Programmable Gate Arrays (FPGAs) have been selected as the most appropriate commercial technology existing nowadays to implement adaptive hardware systems. There are different ways of exploiting reconfigurability in reconfigurable devices. Among them is dynamic and partial reconfiguration. This is a technique which consists in substituting part of the FPGA logic on demand, while the rest of the device continues working. The strategy followed in this thesis is to exploit the dynamic and partial reconfiguration of commercial FPGAs to deal with the flexibility and complexity demands of state-of-the-art embedded systems. The proposal of this thesis to deal with run-time variable system conditions is the use of spatially scalable processing hardware IP cores, which are able to adapt their functionality or performance at run-time, trading them off with the amount of logic resources they occupy in the device. This is referred to as a scalable footprint in the context of this thesis. The distinguishing characteristic of the proposed cores is that they rely on highly parallel, modular and regular architectures, arranged in one or two dimensions. These architectures can be scaled by means of the addition or removal of the composing blocks. This strategy avoids implementing a full version of the core for each possible size, with the corresponding benefits in terms of scaling and adaptation time, as well as bitstream storage memory requirements. Instead of providing specific-purpose architectures, generic architectural templates, which can be tuned to solve different problems, are proposed in this thesis. Architectures following both systolic and wavefront templates have been selected. Together with the proposed scalable architectural templates, other issues needed to ensure the proper design and operation of the scalable cores, such as the device reconfiguration control, the run-time management of the architecture and the implementation techniques have been also addressed in this thesis. With regard to the implementation of dynamically reconfigurable architectures, device dependent low-level details are addressed. Some of the aspects covered in this thesis are the area constrained routing for reconfigurable modules, or an inter-module communication strategy which does not introduce either extra delay or logic overhead. The system implementation, from the hardware description to the device configuration bitstream, has been fully automated by modifying the netlists corresponding to each of the system modules, which are previously generated using the vendor tools. This modification is therefore envisaged as a post-processing step. Based on these implementation proposals, a design tool called DREAMS (Dynamically Reconfigurable Embedded and Modular Systems) has been created, including a graphic user interface. The tool has specific features to cope with modular and regular architectures, including the support for module relocation and the inter-module communications scheme based on the symmetry of the architecture. The core of the tool is a custom router, which has been also exploited in this thesis to obtain symmetric routed nets, with the aim of enhancing the protection of critical reconfigurable circuits against side channel attacks. This is achieved by duplicating the logic with an exactly equal routing. In order to control the reconfiguration process of the FPGA, a Reconfiguration Engine suited to the specific requirements set by the proposed architectures was also proposed. Therefore, in addition to controlling the reconfiguration port, the Reconfiguration Engine has been enhanced with the online relocation ability, which allows employing a unique configuration bitstream for all the positions where the module may be placed in the device. Differently to the existing relocating solutions, which are based on bitstream parsers, the proposed approach is based on the online composition of bitstreams. This strategy allows increasing the speed of the process, while the length of partial bitstreams is also reduced. The height of the reconfigurable modules can be lower than the height of a clock region. The Reconfiguration Engine manages the merging process of the new and the existing configuration frames within each clock region. The process of scaling up and down the hardware cores also benefits from this technique. A direct link to an external memory where partial bitstreams can be stored has been also implemented. In order to accelerate the reconfiguration process, the ICAP has been overclocked over the speed reported by the manufacturer. In the case of Virtex-5, even though the maximum frequency of the ICAP is reported to be 100 MHz, valid operations at 250 MHz have been achieved, including the online relocation process. Portability of the reconfiguration solution to today's and probably, future FPGAs, has been also considered. The reconfiguration engine can be also used to inject faults in real hardware devices, and this way being able to evaluate the fault tolerance offered by the reconfigurable architectures. Faults are emulated by introducing partial bitstreams intentionally modified to provide erroneous functionality. To prove the validity and the benefits offered by the proposed architectures, two demonstration application lines have been envisaged. First, scalable architectures have been employed to develop an evolvable hardware platform with adaptability, fault tolerance and scalability properties. Second, they have been used to implement a scalable deblocking filter suited to scalable video coding. Evolvable Hardware is the use of evolutionary algorithms to design hardware in an autonomous way, exploiting the flexibility offered by reconfigurable devices. In this case, processing elements composing the architecture are selected from a presynthesized library of processing elements, according to the decisions taken by the algorithm, instead of being decided at design time. This way, the configuration of the array may change as run-time environmental conditions do, achieving autonomous control of the dynamic reconfiguration process. Thus, the self-optimization property is added to the native self-configurability of the dynamically scalable architectures. In addition, evolvable hardware adaptability inherently offers self-healing features. The proposal has proved to be self-tolerant, since it is able to self-recover from both transient and cumulative permanent faults. The proposed evolvable architecture has been used to implement noise removal image filters. Scalability has been also exploited in this application. Scalable evolvable hardware architectures allow the autonomous adaptation of the processing cores to a fluctuating amount of resources available in the system. Thus, it constitutes an example of the dynamic quality scalability tackled in this thesis. Two variants have been proposed. The first one consists in a single dynamically scalable evolvable core, and the second one contains a variable number of processing cores. Scalable video is a flexible approach for video compression, which offers scalability at different levels. Differently to non-scalable codecs, a scalable video bitstream can be decoded with different levels of quality, spatial or temporal resolutions, by discarding the undesired information. The interest in this technology has been fostered by the development of the Scalable Video Coding (SVC) standard, as an extension of H.264/AVC. In order to exploit all the flexibility offered by the standard, it is necessary to adapt the characteristics of the decoder to the requirements of each client during run-time. The use of dynamically scalable architectures is proposed in this thesis with this aim. The deblocking filter algorithm is the responsible of improving the visual perception of a reconstructed image, by smoothing blocking artifacts generated in the encoding loop. This is one of the most computationally intensive tasks of the standard, and furthermore, it is highly dependent on the selected scalability level in the decoder. Therefore, the deblocking filter has been selected as a proof of concept of the implementation of dynamically scalable architectures for video compression. The proposed architecture allows the run-time addition or removal of computational units working in parallel to change its level of parallelism, following a wavefront computational pattern. Scalable architecture is offered together with a scalable parallelization strategy at the macroblock level, such that when the size of the architecture changes, the macroblock filtering order is modified accordingly. The proposed pattern is based on the division of the macroblock processing into two independent stages, corresponding to the horizontal and vertical filtering of the blocks within the macroblock. The main contributions of this thesis are: - The use of highly parallel, modular, regular and local architectures to implement dynamically reconfigurable processing IP cores, for data intensive applications with flexibility requirements. - The use of two-dimensional mesh-type arrays as architectural templates to build dynamically reconfigurable IP cores, with a scalable footprint. The proposal consists in generic architectural templates, which can be tuned to solve different computational problems. •A design flow and a tool targeting the design of DPR systems, focused on highly parallel, modular and local architectures. - An inter-module communication strategy, which does not introduce delay or area overhead, named Virtual Borders. - A custom and flexible router to solve the routing conflicts as well as the inter-module communication problems, appearing during the design of DPR systems. - An algorithm addressing the optimization of systems composed of multiple scalable cores, which size can be decided individually, to optimize the system parameters. It is based on a model known as the multi-dimensional multi-choice Knapsack problem. - A reconfiguration engine tailored to the requirements of highly regular and modular architectures. It combines a high reconfiguration throughput with run-time module relocation capabilities, including the support for sub-clock reconfigurable regions and the replication in multiple positions. - A fault injection mechanism which takes advantage of the system reconfiguration engine, as well as the modularity of the proposed reconfigurable architectures, to evaluate the effects of transient and permanent faults in these architectures. - The demonstration of the possibilities of the architectures proposed in this thesis to implement evolvable hardware systems, while keeping a high processing throughput. - The implementation of scalable evolvable hardware systems, which are able to adapt to the fluctuation of the amount of resources available in the system, in an autonomous way. - A parallelization strategy for the H.264/AVC and SVC deblocking filter, which reduces the number of macroblock cycles needed to process the whole frame. - A dynamically scalable architecture that permits the implementation of a novel deblocking filter module, fully compliant with the H.264/AVC and SVC standards, which exploits the macroblock level parallelism of the algorithm. This document is organized in seven chapters. In the first one, an introduction to the technology framework of this thesis, specially focused on dynamic and partial reconfiguration, is provided. The need for the dynamically scalable processing architectures proposed in this work is also motivated in this chapter. In chapter 2, dynamically scalable architectures are described. Description includes most of the architectural contributions of this work. The design flow tailored to the scalable architectures, together with the DREAMs tool provided to implement them, are described in chapter 3. The reconfiguration engine is described in chapter 4. The use of the proposed scalable archtieectures to implement evolvable hardware systems is described in chapter 5, while the scalable deblocking filter is described in chapter 6. Final conclusions of this thesis, and the description of future work, are addressed in chapter 7.
Resumo:
The electrical power distribution and commercialization scenario is evolving worldwide, and electricity companies, faced with the challenge of new information requirements, are demanding IT solutions to deal with the smart monitoring of power networks. Two main challenges arise from data management and smart monitoring of power networks: real-time data acquisition and big data processing over short time periods. We present a solution in the form of a system architecture that conveys real time issues and has the capacity for big data management.
Resumo:
Following the processing and validation of JEFF-3.1 performed in 2006 and presented in ND2007, and as a consequence of the latest updated of this library (JEFF-3.1.2) in February 2012, a new processing and validation of JEFF-3.1.2 cross section library is presented in this paper. The processed library in ACE format at ten different temperatures was generated with NJOY-99.364 nuclear data processing system. In addition, NJOY-99 inputs are provided to generate PENDF, GENDF, MATXSR and BOXER formats. The library has undergone strict QA procedures, being compared with other available libraries (e.g. ENDF/B-VII.1) and processing codes as PREPRO-2000 codes. A set of 119 criticality benchmark experiments taken from ICSBEP-2010 has been used for validation purposes.
Resumo:
El principal objetivo del presente trabajo de investigación fue determinar las diferencias en distintas variables relacionadas con el rendimiento físico entre atletas de distinto nivel durante la prueba de los 60 metros vallas. Un total de 59 vallistas masculinos (los 31 participantes en el Campeonato del Mundo Absoluto de Pista Cubierta y los 28 participantes en el Campeonato de España Absoluto de Pista Cubierta, ambos celebrados en Valencia en el año 2008) formaron la muestra del estudio. El análisis biomecánico se realizó mediante un sistema fotogramétrico en dos dimensiones que permitió calcular, aplicando algoritmos basados en el procedimiento de la DLT (Abdel-Aziz y Karara, 1971), las coordenadas (x, y) de los sucesivos apoyos de los pies de los atletas sobre toda la superficie de competición. La filmación de las pruebas se llevó a cabo con seis cámaras de vídeo, ubicadas sobre la gradas, con una frecuencia de muestreo para el tratamiento de los datos de 50 Hz. En la fase de salida, los atletas de nivel superior mostraron una menor longitud (p<0,05) y tiempo de zancada (p<0,001), debido a un menor tiempo de vuelo (p<0,05). En la fase de vallas, los atletas de nivel más elevado presentaron mayores distancia de ataque a la valla (p<0,001), así como menores distancias de caída de la valla (p<0,001), tiempos de zancada (p<0,01-0,001) y de apoyo (p<0,01-0,001 ) en los cuatro pasos que conforman cada ciclo de vallas, así como un menor tiempo de vuelo en el paso de valla (p<0,001) y en el paso de transición (p<0,001). De manera adicional, se encontraron importantes diferencias en el reparto de los pasos entre vallas entre la primera y tercera valla y el resto de obstáculos. En la fase final, se observó una mayor longitud de zancada en los atletas de nivel superior (p<0,001), así como un menor tiempo de zancada (p<0,01) y de apoyo (p<0,01). Los resultados obtenidos en el presente estudio de investigación avalan la utilización de la fotogrametría en dos dimensiones para el análisis biomecánico de la prueba de 60 metros vallas en competición. Su aplicación en competiciones del máximo nivel internacional ha posibilitado conocer las características de los vallistas a lo largo de toda la prueba y determinar posibles implicaciones de cara al proceso de entrenamiento. ABSTRACT The aim of this research was to determine the differences in different variables related to physical performance among athletes of different levels during the race of 60 meter hurdles. A total of 59 male hurdlers (the 31 participants in the World Indoor Championship and the 28 participants in the Spanish Indoor Championship, both held in Valencia in 2008) formed the sample of the study. The biomechanical analysis of athletes was performed using a two-dimensional photogrammetric system which enabled calculation, applying algorithms based on the DLT method (Abdel -Aziz y Karara , 1971), the coordinates (x , y) of the successive supports of the feet on the entire competition surface. Filming test was conducted with six video cameras, located on the bleachers, with a sampling frequency for data processing of 50 Hz. In the approach run phase, the top-level athletes showed a smaller length step (p<0.05), and shorter step time (p<0.001), due to a shorter step flight time (p<0.05). In the hurdle unit phase, the higher level athletes had greater take-off distances (p<0.001), shorter landing distances (p<0.001), smaller step times (p<0.01-0.001), and support times (p<0.01- 0.001) in the four steps that comprised each hurdle unit, and smaller flight times in the hurdle step (p < 0.001), and the recovery step (p<0.001). Additionally, differences in the distribution of hurdle unit steps between the first and third hurdle, and other hurdles were found. In the run-in phase, a greater step length in top-level athletes (p<0.001), and a shorter step time (p<0.01) and contact time (p<0.01) was observed. The results obtained in this study support the use of photogrammetry in two dimensions for biomechanical analysis in 60 meter hurdles competition events. Its application at the highest international level competitions has allowed to know the characteristics of the hurdlers over the entire race and identify possible implications for the training process.