30 resultados para Algebraic ANRs

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of parameterizing approximately algebraic curves and surfaces is an active research field, with many implications in practical applications. The problem can be treated locally or globally. We formally state the problem, in its global version for the case of algebraic curves (planar or spatial), and we report on some algorithms approaching it, as well as on the associated error distance analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El cálculo de relaciones binarias fue creado por De Morgan en 1860 para ser posteriormente desarrollado en gran medida por Peirce y Schröder. Tarski, Givant, Freyd y Scedrov demostraron que las álgebras relacionales son capaces de formalizar la lógica de primer orden, la lógica de orden superior así como la teoría de conjuntos. A partir de los resultados matemáticos de Tarski y Freyd, esta tesis desarrolla semánticas denotacionales y operacionales para la programación lógica con restricciones usando el álgebra relacional como base. La idea principal es la utilización del concepto de semántica ejecutable, semánticas cuya característica principal es el que la ejecución es posible utilizando el razonamiento estándar del universo semántico, este caso, razonamiento ecuacional. En el caso de este trabajo, se muestra que las álgebras relacionales distributivas con un operador de punto fijo capturan toda la teoría y metateoría estándar de la programación lógica con restricciones incluyendo los árboles utilizados en la búsqueda de demostraciones. La mayor parte de técnicas de optimización de programas, evaluación parcial e interpretación abstracta pueden ser llevadas a cabo utilizando las semánticas aquí presentadas. La demostración de la corrección de la implementación resulta extremadamente sencilla. En la primera parte de la tesis, un programa lógico con restricciones es traducido a un conjunto de términos relacionales. La interpretación estándar en la teoría de conjuntos de dichas relaciones coincide con la semántica estándar para CLP. Las consultas contra el programa traducido son llevadas a cabo mediante la reescritura de relaciones. Para concluir la primera parte, se demuestra la corrección y equivalencia operacional de esta nueva semántica, así como se define un algoritmo de unificación mediante la reescritura de relaciones. La segunda parte de la tesis desarrolla una semántica para la programación lógica con restricciones usando la teoría de alegorías—versión categórica del álgebra de relaciones—de Freyd. Para ello, se definen dos nuevos conceptos de Categoría Regular de Lawvere y _-Alegoría, en las cuales es posible interpretar un programa lógico. La ventaja fundamental que el enfoque categórico aporta es la definición de una máquina categórica que mejora e sistema de reescritura presentado en la primera parte. Gracias al uso de relaciones tabulares, la máquina modela la ejecución eficiente sin salir de un marco estrictamente formal. Utilizando la reescritura de diagramas, se define un algoritmo para el cálculo de pullbacks en Categorías Regulares de Lawvere. Los dominios de las tabulaciones aportan información sobre la utilización de memoria y variable libres, mientras que el estado compartido queda capturado por los diagramas. La especificación de la máquina induce la derivación formal de un juego de instrucciones eficiente. El marco categórico aporta otras importantes ventajas, como la posibilidad de incorporar tipos de datos algebraicos, funciones y otras extensiones a Prolog, a la vez que se conserva el carácter 100% declarativo de nuestra semántica. ABSTRACT The calculus of binary relations was introduced by De Morgan in 1860, to be greatly developed by Peirce and Schröder, as well as many others in the twentieth century. Using different formulations of relational structures, Tarski, Givant, Freyd, and Scedrov have shown how relation algebras can provide a variable-free way of formalizing first order logic, higher order logic and set theory, among other formal systems. Building on those mathematical results, we develop denotational and operational semantics for Constraint Logic Programming using relation algebra. The idea of executable semantics plays a fundamental role in this work, both as a philosophical and technical foundation. We call a semantics executable when program execution can be carried out using the regular theory and tools that define the semantic universe. Throughout this work, the use of pure algebraic reasoning is the basis of denotational and operational results, eliminating all the classical non-equational meta-theory associated to traditional semantics for Logic Programming. All algebraic reasoning, including execution, is performed in an algebraic way, to the point we could state that the denotational semantics of a CLP program is directly executable. Techniques like optimization, partial evaluation and abstract interpretation find a natural place in our algebraic models. Other properties, like correctness of the implementation or program transformation are easy to check, as they are carried out using instances of the general equational theory. In the first part of the work, we translate Constraint Logic Programs to binary relations in a modified version of the distributive relation algebras used by Tarski. Execution is carried out by a rewriting system. We prove adequacy and operational equivalence of the semantics. In the second part of the work, the relation algebraic approach is improved by using allegory theory, a categorical version of the algebra of relations developed by Freyd and Scedrov. The use of allegories lifts the semantics to typed relations, which capture the number of logical variables used by a predicate or program state in a declarative way. A logic program is interpreted in a _-allegory, which is in turn generated from a new notion of Regular Lawvere Category. As in the untyped case, program translation coincides with program interpretation. Thus, we develop a categorical machine directly from the semantics. The machine is based on relation composition, with a pullback calculation algorithm at its core. The algorithm is defined with the help of a notion of diagram rewriting. In this operational interpretation, types represent information about memory allocation and the execution mechanism is more efficient, thanks to the faithful representation of shared state by categorical projections. We finish the work by illustrating how the categorical semantics allows the incorporation into Prolog of constructs typical of Functional Programming, like abstract data types, and strict and lazy functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a concurrent semantics (i.e. a semantics where concurrency is explicitely represented) for CC programs with atomic tells. This allows to derive concurrency, dependency, and nondeterminism information for such languages. The ability to treat failure information puts CLP programs also in the range of applicability of our semantics: although such programs are not concurrent, the concurrency information derived in the semantics may be interpreted as possible parallelism, thus allowing to safely parallelize those computation steps which appear to be concurrent in the net. Dually, the dependency information may also be interpreted as necessary sequentialization, thus possibly exploiting it to schedule CC programs. The fact that the semantical structure contains dependency information suggests a new tell operation, which checks for consistency only the constraints it depends on, achieving a reasonable trade-off between efficiency and atomicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the algebraic properties of the local transition functions of elementary cellular automata (ECA) were analysed. Specifically, a classification of such cellular automata was done according to their algebraic degree, the balancedness, the resiliency, nonlinearity, the propagation criterion and the existence of non-zero linear structures. It is shown that there is not any ECA satisfying all properties at the same time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce an easily computable topological measure which locates the effective crossover between segregation and integration in a modular network. Segregation corresponds to the degree of network modularity, while integration is expressed in terms of the algebraic connectivity of an associated hypergraph. The rigorous treatment of the simplified case of cliques of equal size that are gradually rewired until they become completely merged, allows us to show that this topological crossover can be made to coincide with a dynamical crossover from cluster to global synchronization of a system of coupled phase oscillators. The dynamical crossover is signaled by a peak in the product of the measures of intracluster and global synchronization, which we propose as a dynamical measure of complexity. This quantity is much easier to compute than the entropy (of the average frequencies of the oscillators), and displays a behavior which closely mimics that of the dynamical complexity index based on the latter. The proposed topological measure simultaneously provides information on the dynamical behavior, sheds light on the interplay between modularity and total integration, and shows how this affects the capability of the network to perform both local and distributed dynamical tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a new two-dimensional analytic optics design method is presented that enables the coupling of three ray sets with two lens profiles. This method is particularly promising for optical systems designed for wide field of view and with clearly separated optical surfaces. However, this coupling can only be achieved if different ray sets will use different portions of the second lens profile. Based on a very basic example of a single thick lens, the Simultaneous Multiple Surfaces design method in two dimensions (SMS2D) will help to provide a better understanding of the practical implications on the design process by an increased lens thickness and a wider field of view. Fermat?s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The transformation of these functional differential equations into an algebraic linear system of equations allows the successive calculation of the Taylor series coefficients up to an arbitrary order. The evaluation of the solution space reveals the wide range of possible lens configurations covered by this analytic design method. Ray tracing analysis for calculated 20th order Taylor polynomials demonstrate excellent performance and the versatility of this new analytical optics design concept.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este proyecto se enmarca dentro de la Computación Simbólica y de los fundamentos matemáticos del Diseño Geométrico Asistido por ordenador (CAGD). Se abordara uno de los problemas principales en el ámbito del CAGD y que es la manipulación de las Curvas Concoide. La importancia del avance en la manipulación de las curvas concoide radica en el papel fundamental que desempeñan en múltiples aplicaciones en la actualidad dentro de campos de diversa índole tales como la medicina, la óptica, el electromagnetismo, la construcción, etc. El objetivo principal de este proyecto es el diseño e implementación de algoritmos para el estudio, cálculo y manipulación de curvas concoides, utilizando técnicas propias del Calculo Simbólico. Esta implementación se ha programado utilizando el sistema de computación simbólica Maple. El proyecto consiste en dos partes bien diferenciadas, una parte teórica y otra más practica. La primera incluye la descripción geométrica y definición formal de curvas concoide, así como las ideas y propiedades básicas. De forma más precisa, se presenta un estudio matemático sobre el análisis de racionalidad de estas curvas, explicando los algoritmos que serán implementados en las segunda parte, y que constituye el objetivo principal de este proyecto. Para cerrar esta parte, se presenta una pequeña introducción al sistema y a la programación en Maple. Por otro lado, la segunda parte de este proyecto es totalmente original, y en ella el autor desarrolla las implementaciones en Maple de los algoritmos presentados en la parte anterior, así como la creación de un paquete Maple que las recoge. Por último, se crean las paginas de ayudas en el sistema Maple para la correcta utilización del paquete matemático anteriormente mencionado. Una vez terminada la parte de implementación, se aplican los algoritmos implementados a una colección de curvas clásicas conocidas, recogiendo los datos y resultados obtenidos en un atlas de curvas. Finalmente, se presenta una recopilación de las aplicaciones más destacadas en las que las concoides desempeñan un papel importante así como una breve reseña sobre las concoides de superficies, objeto de varios estudios en la actualidad y a los que se considera que el presente proyecto les puede resultar de gran utilidad. Abstract This project is set up in the framework of Symbolic Computation as well as in the implementation of algebraic-geometric problems that arise from Computer Aided Geometric Design (C.A.G.D.) applications. We address problems related to conchoid curves. The importance of these curves is the fundamental role that they play in current applications as medicine, optics, electromagnetism, construction, etc. The main goal of this project is to design and implement some algorithms to solve problems in studying, calculating and generating conchoid curves with symbolic computation techniques. For this purpose, we program our implementations in the symbolic system “Maple". The project consists of two differentiated parts, one more theoretical part and another part more practical. The first one includes the description of conchoid curves as well as the basic ideas about the concept and its basic properties. More precisely, we introduce in this part the mathematical analysis of the rationality of the conchoids, and we present the algorithms that will be implemented. Furthermore, the reader will be brie y introduced in Maple programming. On the other hand, the second part of this project is totally original. In this more practical part, the author presents the implemented algorithms and a Maple package that includes them, as well as their help pages. These implemented procedures will be check and illustrated with some classical and well known curves, collecting the main properties of the conchoid curves obtained in a brief atlas. Finally, a compilation of the most important applications where conchoids play a fundamental role, and a brief introduction to the conchoids of surfaces, subject of several studies today and where this project could be very useful, are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Algebraic topology (homology) is used to analyze the state of spiral defect chaos in both laboratory experiments and numerical simulations of Rayleigh-Bénard convection. The analysis reveals topological asymmetries that arise when non-Boussinesq effects are present. The asymmetries are found in different flow fields in the simulations and are robust to substantial alterations to flow visualization conditions in the experiment. However, the asymmetries are not observable using conventional statistical measures. These results suggest homology may provide a new and general approach for connecting spatiotemporal observations of chaotic or turbulent patterns to theoretical models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various researchers have developed models of conventional H2O–LiBr absorption machines with the aim of predicting their performance. In this paper, the methodology of characteristic equations developed by Hellmann et al. (1998) is applied. This model is able to represent the capacity of single effect absorption chillers and heat pumps by means of simple algebraic equations. An extended characteristic equation based on a characteristic temperature difference has been obtained, considering the facility features. As a result, it is concluded that for adiabatic absorbers a subcooling temperature must be specified. The effect of evaporator overflow has been characterized. Its influence on cooling capacity has been included in the extended characteristic equation. Taking into account the particular design and operation features, a good agreement between experimental performance data and those obtained through the extended characteristic equation has been achieved at off-design operation. This allows its use for simulation and control purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical logic cells, employed in several tasks as optical computing or optically controlled switches for photonic switching, offer a very particular behavior when the working conditions are slightly modified. One of the more striking changes occurs when some delayed feedback is applied between one of the possible output gates and a control input. Some of these new phenomena have been studied by us and reported in previous papers. A chaotic behavior is one of the more characteristic results and its possible applications range from communications to cryptography. But the main problem related with this behavior is the binary character of the resulting signal. Most of the nowadays-employed techniques to analyze chaotic signals concern to analogue signals where algebraic equations are possible to obtain. There are no specific tools to study digital chaotic signals. Some methods have been proposed. One of the more used is equivalent to the phase diagram in analogue chaos. The binary signal is converted to hexadecimal and then analyzed. We represented the fractal characteristics of the signal. It has the characteristics of a strange attractor and gives more information than the obtained from previous methods. A phase diagram, as the one obtained by previous techniques, may fully cover its surface with the trajectories and almost no information may be obtained from it. Now, this new method offers the evolution around just a certain area being this lines the strange attractor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rising water demands are difficult to meet in many regions of the world. In consequence, under meteorological adverse conditions, big economic losses in agriculture can take place. This paper aims to analyze the variability of water shortage in an irrigation district and the effect on farmer?s income. A probabilistic analysis of water availability for agriculture in the irrigation district is performed, through a supply-system simulation approach, considering stochastically generated series of stream-flows. Net margins associated to crop production are as well estimated depending on final water allocations. Net margins are calculated considering either single-crop farming, either a polyculture system. In a polyculture system, crop distribution and water redistribution are calculated through an optimization approach using the General Algebraic Modeling System (GAMS) for several scenarios of irrigation water availability. Expected net margins are obtained by crop and for the optimal crop and water distribution. The maximum expected margins are obtained for the optimal crop combination, followed by the alfalfa monoculture, maize, rice, wheat and finally barley. Water is distributed as follows, from biggest to smallest allocation: rice, alfalfa, maize, wheat and barley.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a theoretical framework intended to accommodate circuit devices described by characteristics involving more than two fundamental variables. This framework is motivated by the recent appearance of a variety of so-called mem-devices in circuit theory, and makes it possible to model the coexistence of memory effects of different nature in a single device. With a compact formalism, this setting accounts for classical devices and also for circuit elements which do not admit a two-variable description. Fully nonlinear characteristics are allowed for all devices, driving the analysis beyond the framework of Chua and Di Ventra We classify these fully nonlinear circuit elements in terms of the variables involved in their constitutive relations and the notions of the differential- and the state-order of a device. We extend the notion of a topologically degenerate configuration to this broader context, and characterize the differential-algebraic index of nodal models of such circuits. Additionally, we explore certain dynamical features of mem-circuits involving manifolds of non-isolated equilibria. Related bifurcation phenomena are explored for a family of nonlinear oscillators based on mem-devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend in this paper some previous results concerning the differential-algebraic index of hybrid models of electrical and electronic circuits. Specifically, we present a comprehensive index characterization which holds without passivity requirements, in contrast to previous approaches, and which applies to nonlinear circuits composed of uncoupled, one-port devices. The index conditions, which are stated in terms of the forest structure of certain digraph minors, do not depend on the specific tree chosen in the formulation of the hybrid equations. Additionally, we show how to include memristors in hybrid circuit models; in this direction, we extend the index analysis to circuits including active memristors, which have been recently used in the design of nonlinear oscillators and chaotic circuits. We also discuss the extension of these results to circuits with controlled sources, making our framework of interest in the analysis of circuits with transistors, amplifiers, and other multiterminal devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the novel experimental measures presented in this paper is to show the improvement achieved in the computation time for a 2D self-adaptive hp finite element method (FEM) software accelerated through the Adaptive Cross Approximation (ACA) method. This algebraic method (ACA) was presented in an previous paper in the hp context for the analysis of open region problems, where the robust behaviour, good accuracy and high compression levels of ACA were demonstrated. The truncation of the infinite domain is settled through an iterative computation of the Integral Equation (IE) over a ficticious boundary, which, regardless its accuracy and efficiency, turns out to be the bottelneck of the code. It will be shown that in this context ACA reduces drastically the computational effort of the problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A matrix representation of the sparse differential resultant is the basis for efficient computation algorithms, whose study promises a great contribution to the development and applicability of differential elimination techniques. It is shown how sparse linear differential resultant formulas provide bounds for the order of derivation, even in the nonlinear case, and they also provide (in many cases) the bridge with results in the nonlinear algebraic case.