8 resultados para Alcohol Safety Action Project--Kansas City, Mo.
em Universidad Politécnica de Madrid
Resumo:
European Universities are involved in series of great changes regarding teaching and education organization during the last few years. The origin of these changes is the creation of the so-called European Higher Education Area (EHEA), which main target is to harmonize the different University studies throughout Europe. As a consequence, most of the programs of studies in all degrees are suffering changes in order to converge to common structures. Taking advantage of the actual process, some European universities are moving from traditional Agricultural Engineering programs to a more wide discipline named recently as Biosystems Engineering, which is a science- based engineering discipline that integrates engineering science and design with applied biological, environmental and agricultural sciences, broadening in this way the area of application of Engineering sciences not strictly to agricultural sciences, but to the biologic al sciences in general, including the agricultural sciences. This paper presents a comparative study of different Bachelor of Science degrees offered by American and European Universities in the field of Agricultural/Biosystems Engineering. To carry out the analysis 40 programs accredited by ABET in American Universities and 50 European programs. Among other questions, the total number of credits, the number of semesters, the kind of modules and the distribution of subjects in groups (Basic Sciences, Engineering Fundamentals, Agricultural/Biological Sciences, Humanities & Economic Sciences, Applied Agricultural/Biological Engineering and electives) are discussed in the paper. The information provided can be an useful starting point in future definitions of new or renewed degrees with the aim of advancing in internationalization of the programs and helping student’s mobility.
Resumo:
La escasez de recursos, la desertización creciente y el previsible calentamiento global forman un escenario físico sin precedentes que urge la revisión de las relaciones entre arquitectura y agua en la urbanización de los paisajes secos, donde la aridez es el factor limitante principal. Cuestionar la idea de escasez, la de residuo o la de confort es el punto de partida para analizar la hidrología urbana. La condición ubicua y dinámica del agua, sus continuos cambios de estado y las implicaciones energéticas y ambientales involucradas argumentan a favor de un entendimiento integral, holístico, que aborda el diseño en relación a lo paisajístico, lo infraestructural y lo ambiental como un único ámbito de investigación, planteado en términos no solo de materia o de escasez, sino de energía. Este trabajo se interesa por el rol de la arquitectura en este proyecto conjunto, integral, del espacio físico con el ciclo hidrológico donde lo orgánico, lo geológico y lo atmosférico están ligados, y donde las categorías de lo hidrológico y lo hidráulico se confunden. Las profundas implicaciones culturales en la construcción de la naturaleza urbana y en la relación con el cuerpo humano adquieren especial notoriedad en los modelos de paisaje y de espacio público adoptados, importados desde las geografías húmedas, y en la estigmatización del agua desde los presupuestos del higienismo decimonónico, que conduce al hidrofugado general de una ciudad aséptica y estéril, que se extiende hasta las envolventes de fachadas estancas y los interiores blancos y satinados. La búsqueda de referentes salta la modernidad hacia contextos de baja energía como el oasis tradicional de las tierras áridas, que concilia la formación de un ecosistema productivo con la climatización de un espacio público exterior, o los ambientes aislados de la investigación aeroespacial, con ciclos cerrados de materia. Las condiciones del ciclo del agua, como la vinculación con el suelo y el territorio, la capacidad de disolver, de mezclarse y de lavar, su volumen variable y su papel como termorregulador señalan el interés que características físicas como la fluidez, la biodiversidad, la hidrofilia y la transpirabilidad tienen para una arquitectura con competencias hidráulicas y un espacio urbano transparente a los procesos del agua. La morfología y localización, la elección de escalas, jerarquías y relaciones entre espacios y la reformulación de los sistemas constructivos aparecen como herramientas y categorías propias desde las que proponer mejores respuestas a problemas como la deshidratación, la erosión y la contaminación. Una urbanización permeable e hidrófila que absorba el agua como un recurso valioso, nuevos ensamblajes para la bioquímica urbana (que introduzcan una idea de limpieza más próxima a fertilidad que a la desinfección), y el diseño de las condiciones atmosféricas a través de una arquitectura transpirable, que se empapa y rezuma frescor, son las claves de este nuevo proyecto. La ciudad se piensa como una síntesis multiescalar de espacios hidráulicos que aporta mayor resiliencia frente a la desertificación y las condiciones climáticas extremas, y mayor visibilidad en la escena pública al agua y a las inevitables conexiones entre ecología y economía. Pero también es una oportunidad para revisar las categorías disciplinares, para renovar las consistencias materiales, las calidades ambientales y las relaciones entre el cuerpo y el espacio. ABSTRACT The shortage of resources, foreseeable global warming and increasing desertification create an unprecedented prospect that question the existing relationships between water and architecture, in the urbanization of the arid lands. The awareness of the huge volumes of water that pierce unnoticed through urban space, their impact on the landscape as well as on environmental qualities, promote a design field where cultural, social and political considerations intersect, related to the body and the physical experience of space within the built environment. Fluidity and ubiquity, solution ability, variability and cyclical processes are characteristic of water as material, directly related with the fields of potential, chemical and thermal energy and the reality of its mass, as it occupies a changing volume in space. These are also the imposing cross sections that water introduces into the project, that argue in favor of a comprehensive and holistic understanding, of addressing design in relationship to landscape, infrastructure and environmental issues as a one single area of research. This work attempts to investigate how architecture, with its specific tools, can partake in the design of water cycle in the space, linking the organic, geological, and atmospheric, blurring the lines between hydrology and hydraulic. It aims to identify issues, within the continuous query associated with water, that deal with the architectural project and may have here better results. The deep cultural implications in the construction of urban nature and the relationship with the body, acquire special notoriety in the models of landscape and public space adopted, imported from humid geographies. Also in the stigmatization of water from the premises of nineteenth- century hygienics, which lead to the entire waterproofing of an aseptic and sterile city, to the sealed facades and white and polished interiors. The search for alternative references goes beyond modernity towards a mindset of low energy, as the traditional oasis of arid lands, which aims to reconcile the formation of a productive ecosystem with the conditioning of an outdoor public space, or the controlled environments of aerospace research, with closed cycles of matter. Fluidity, biodiversity, hydrophilicity and breathability are characteristic of an architecture with hydraulic competences. The distributing phenomenon of water, its necessary connectivity to the ground and to small cycles in the ecosystems, shows strong affinities with an infrastructural architecture, as an alternative to large-scale centralized networks. Its volume has approximated to the dimensions of the built space, promoting a new found condition of coexistence. A permeable and hydrophilic urbanization absorbs water as a valuable resource; new assemblies for urban biochemistry introduce an idea of sanitation closer to fertility than to disinfection; a breathable architecture that soaks and exudes freshness design the atmospheric conditions: these are the essential components of this new project. The city is understood as a synthesis of multi-scale hydraulic spaces that provides greater resilience against desertification and increases the visibility of water and the linkages between ecology and economy in the public scene. It is also an opportunity to review the disciplinary categories of architecture, the material consistencies, the environmental qualities and the relationship between body and space.
Capacity Building through education, research and collaboration: AFRICA BUILD, an eHealth Case Study
Resumo:
AFRICA BUILD (AB) is a Coordination Action project under the 7th European Framework Programme having the aim of improving the capacities for health research and education in Africa through Information and Communication Technologies (ICT). This project, started in 2012, has promoted health research, education and evidence-based practice in Africa through the creation of centers of excellence, by using ICT,?know-how?, eLearning and knowledge sharing, through Web-enabled virtual communities.
Resumo:
Durante las últimas décadas se ha producido un fenómeno global de envejecimiento en la población. Esta tendencia se puede observar prácticamente en todos los países del mundo y se debe principalmente a los avances en la medicina, y a los descensos en las tasas de fertilidad y mortalidad. El envejecimiento de la población tiene un gran impacto en la salud de los ciudadanos, y a menudo es la causa de aparición de enfermedades crónicas. Este tipo de enfermedades supone una amenaza y una carga importantes para la sociedad, especialmente en aspectos como la mortalidad o los gastos en los sistemas sanitarios. Entre las enfermedades cardiovasculares, la insuficiencia cardíaca es probablemente la condición con mayor prevalencia y afecta a 23-26 millones de personas en todo el mundo. Normalmente, la insuficiencia cardíaca presenta un mal pronóstico y una tasa de supervivencia bajas, en algunos casos peores que algún tipo de cáncer. Además, suele ser la causa de hospitalizaciones frecuentes y es una de las enfermedades más costosas para los sistemas sanitarios. La tendencia al envejecimiento de la población y la creciente incidencia de las enfermedades crónicas están llevando a una situación en la que los sistemas de salud no son capaces de hacer frente a la demanda de la sociedad. Los servicios de salud existentes tendrán que adaptarse para ser efectivos y sostenibles en el futuro. Es necesario identificar nuevos paradigmas de cuidado de pacientes, así como mecanismos para la provisión de servicios que ayuden a transformar estos sistemas sanitarios. En este contexto, esta tesis se plantea la búsqueda de soluciones, basadas en las Tecnologías de la Información y la Comunicación (TIC), que contribuyan a realizar la transformación en los sistemas sanitarios. En concreto, la tesis se centra en abordar los problemas de una de las enfermedades con mayor impacto en estos sistemas: la insuficiencia cardíaca. Las siguientes hipótesis constituyen la base para la realización de este trabajo de investigación: 1. Es posible definir un modelo basado en el paradigma de lazo cerrado y herramientas TIC que formalice el diseño de mejores servicios para pacientes con insuficiencia cardíaca. 2. El modelo de lazo cerrado definido se puede utilizar para definir un servicio real que ayude a gestionar la insuficiencia cardíaca crónica. 3. La introducción, la adopción y el uso de un servicio basado en el modelo definido se traducirá en mejoras en el estado de salud de los pacientes que sufren insuficiencia cardíaca. a. La utilización de un sistema basado en el modelo de lazo cerrado definido mejorará la experiencia del usuario de los pacientes. La definición del modelo planteado se ha basado en el estándar ISO / EN 13940- Sistema de conceptos para dar soporte a la continuidad de la asistencia. Comprende un conjunto de conceptos, procesos, flujos de trabajo, y servicios como componentes principales, y representa una formalización de los servicios para los pacientes con insuficiencia cardíaca. Para evaluar el modelo definido se ha definido un servicio real basado en el mismo, además de la implementación de un sistema de apoyo a dicho servicio. El diseño e implementación de dicho sistema se realizó siguiendo la metodología de Diseño Orientado a Objetivos. El objetivo de la evaluación consistía en investigar el efecto que tiene un servicio basado en el modelo de lazo cerrado sobre el estado de salud de los pacientes con insuficiencia cardíaca. La evaluación se realizó en el marco de un estudio clínico observacional. El análisis de los resultados ha comprendido métodos de análisis cuantitativos y cualitativos. El análisis cuantitativo se ha centrado en determinar el estado de salud de los pacientes en base a datos objetivos (obtenidos en pruebas de laboratorio o exámenes médicos). Para realizar este análisis se definieron dos índices específicos: el índice de estabilidad y el índice de la evolución del estado de salud. El análisis cualitativo ha evaluado la autopercepción del estado de salud de los pacientes en términos de calidad de vida, auto-cuidado, el conocimiento, la ansiedad y la depresión, así como niveles de conocimiento. Se ha basado en los datos recogidos mediante varios cuestionarios o instrumentos estándar (i.e. EQ-5D, la Escala de Ansiedad y Depresión (HADS), el Cuestionario de Cardiomiopatía de Kansas City (KCCQ), la Escala Holandesa de Conocimiento de Insuficiencia Cardíaca (DHFKS), y la Escala Europea de Autocuidado en Insuficiencia Cardíaca (EHFScBS), así como cuestionarios dedicados no estandarizados de experiencia de usuario. Los resultados obtenidos en ambos análisis, cuantitativo y cualitativo, se compararon con el fin de evaluar la correlación entre el estado de salud objetivo y subjetivo de los pacientes. Los resultados de la validación demostraron que el modelo propuesto tiene efectos positivos en el cuidado de los pacientes con insuficiencia cardíaca y contribuye a mejorar su estado de salud. Asimismo, ratificaron al modelo como instrumento válido para la definición de servicios mejorados para la gestión de esta enfermedad. ABSTRACT During the last decades we have witnessed a global aging phenomenon in the population. This can be observed in practically every country in the world, and it is mainly caused by the advances in medicine, and the decrease of mortality and fertility rates. Population aging has an important impact on citizens’ health and it is often the cause for chronic diseases, which constitute global burden and threat to the society in terms of mortality and healthcare expenditure. Among chronic diseases, Chronic Heart Failure (CHF) or Heart Failure (HF) is probably the one with highest prevalence, affecting between 23 and 26 million people worldwide. Heart failure is a chronic, long-term and serious condition with very poor prognosis and worse survival rates than some type of cancers. Additionally, it is often the cause of frequent hospitalizations and one of the most expensive conditions for the healthcare systems. The aging trends in the population and the increasing incidence of chronic diseases are leading to a situation where healthcare systems are not able to cope with the society demand. Current healthcare services will have to be adapted and redefined in order to be effective and sustainable in the future. There is a need to find new paradigms for patients’ care, and to identify new mechanisms for services’ provision that help to transform the healthcare systems. In this context, this thesis aims to explore new solutions, based on ICT, that contribute to achieve the needed transformation within the healthcare systems. In particular, it focuses on addressing the problems of one of the diseases with higher impact within these systems: Heart Failure. The following hypotheses represent the basis to the elaboration of this research: 1. It is possible to define a model based on a closed-loop paradigm and ICT tools that formalises the design of enhanced healthcare services for chronic heart failure patients. 2. The described closed-loop model can be exemplified in a real service that supports the management of chronic heart failure disease. 3. The introduction, adoption and use of a service based on the outlined model will result in improvements in the health status of patients suffering heart failure. 4. The user experience of patients when utilizing a system based on the defined closed-loop model will be enhanced. The definition of the closed-loop model for health care support of heart failure patients have been based on the standard ISO/EN 13940 System of concepts to support continuity of care. It includes a set of concept, processes and workflows, and services as main components, and it represent a formalization of services for heart failure patients. In order to be validated, the proposed closed-loop model has been instantiated into a real service and a supporting IT system. The design and implementation of the system followed the user centred design methodology Goal Oriented Design. The validation, that included an observational clinical study, aimed to investigate the effect that a service based on the closed-loop model had on heart failure patients’ health status. The analysis of results comprised quantitative and qualitative analysis methods. The quantitative analysis was focused on determining the health status of patients based on objective data (obtained in lab tests or physical examinations). Two specific indexes where defined and considered in this analysis: the stability index and the health status evolution index. The qualitative analysis assessed the self-perception of patients’ health status in terms of quality of life, self-care, knowledge, anxiety and depression, as well as knowledge levels. It was based on the data gathered through several standard instruments (i.e. EQ-5D, the Hospital Anxiety and Depression Scale, the Kansas City Cardiomyopathy Questionnaire, the Dutch Heart Failure Knowledge Scale, and the European Heart Failure Self-care Behaviour Scale) as well as dedicated non-standardized user experience questionnaires. The results obtained in both analyses, quantitative and qualitative, were compared in order to assess the correlation between the objective and subjective health status of patients. The results of the validation showed that the proposed model contributed to improve the health status of the patients and had a positive effect on the patients’ care. It also proved that the model is a valid instrument for designing enhanced healthcare services for heart failure patients.
Resumo:
Between 2003 and 2007 an urban network of road tunnels with a total constructed tubes length of 45 km was built in the city of Madrid. This amazing engineering work, known as “Calle30 Project” counted with different kinds of tunnel typologies and ventilation systems. Due to the length of the tunnels and the impact of the work itself, the tunnels were endowed with a great variety of installations to provide the maximum levels of safety both for users and the infrastructure including,in some parts of the tunnel, fixed fire fighting system based on water mist. Within this framework a large-scale campaign of fire tests were planned to study different aspects related to fire safety in the tunnels including the phenomena of the interaction between ventilation and extinction system. In addition, this large scale fire tests allowed fire brigades of the city of Madrid an opportunity to define operational procedures for specific fire fighting in tunnels and evaluate the possibilities of fixed fire fighting systems. The tests were carried out in the Center of Experimentation "San Pedro of Anes" which counts with a 600 m tunnel with a removable false ceiling for reproducing different ceiling heights and ventilation conditions (transverse and longitudinal ones). Interesting conclusions on the interaction of ventilation and water mist systems were obtained but also on other aspects including performance of water mist system in terms of reduction of gas temperatures or visibility conditions. This paper presents a description of the test’s campaign carried out and some previous results obtained.
Resumo:
The third Training School of the Action took place in Vitoria-Gasteiz (Basque country, Spain) from 24th to 26th September 2014. Vitoria-Gateiz has experimented an important urban outgrowth in the last decade, mainly through the planning and development of two new neighborhoods, Zabalgana and Salburúa, situated at the eastern and western border of the city, by the Greenbelt. These new development are well-equipped and designed according to sustainability principles. Nevertheless, among the main problems they present is their over-dimensioned public space, which creates some areas lacking enough density and mix of uses. On the other hand it is very expensive for the municipality to maintain these public space with the high Vitorian urban standards for public space. The proposed solution for this problem is a strategy of "re-densification" through the insertion of new uses The debate has arisen about which are the most adequate uses to insert in order to get an increasing of urban vitality, specially considering that housing has reached its peak and that Vitoria-Gasteiz is well served with social and sport amenities. The main goal of the TS was to offer an opportunity for the reflection about how urban agriculture might be an optimal alternative for the re-qualifying of this over-dimensioned public space in the new neighbourhoods, especially considering it synergic potential as a tool for production, leisure and landscaping, including the possibility of energy crops within the limits of urban space. Continuity with rural and natural surrounding area through alternatives for urban fringe at the small scale is a relevant issue to be considered as well within the reflection. Taking Zabalgana neighbourhood as a practical field for experiment, the Training School is conceived as a practical and intensive design charrette to be held during a whole day after two days of local knowledge-deepening through field visits and presentations.
Resumo:
Urban mobility in Europe is always a responsibility of the municipalities which propose measures to reduce CO2 emissions in terms of mobility aimed at reducing individual private transport (car). The European Commission's Action Plan on Urban Mobility calls for an increase in the take-up of Sustainable Urban Mobility Plans in Europe. SUMPs aim to create a sustainable urban transport system. Europe has got some long term initiatives and has been using some evaluation procedures, many of them through European projects. Nevertheless, the weak point with the SUMPs in Spain, has been the lack of concern about the evaluation and the effectiveness of the measures implemented in a SUMP. For this reason, it is difficult to know exactly whether or not the SUMPs have positively influenced in the modal split of the cities, and its contribution to reduce CO2 levels. The case of the City of Burgos is a very illustrative example as it developed a CiViTAS project during the years 2005-2009, with a total investment of 6M?. The results have been considered as ?very successful? even at European level. The modal split has changed considerably for better, The cost-effectiveness ratio of the SUMP in the city can be measured with the CO2 ton saved, specifically 36 ? per CO2 ton saved, which is fully satisfactory and in line with calculations from other European researchers. Additionally, the authors propose a single formula to measure the effectiveness of the activities developed under the umbrella of a SUMP.
Resumo:
El presente trabajo se basa en la filosofía de la Construcción sin Pérdidas (“Lean Construction”), analizando la situación de esta filosofía en el sector de la edificación en el contexto internacional y español, respondiendo las siguientes preguntas: 1. ¿Cómo surge el “Lean Construction”? 2. ¿Cuáles son sus actividades, funciones y cometidos? 3. ¿Existe regulación del ¨Lean Construction” en otros países? 4. ¿Existe demanda del ¨Lean Construction” en España? 5. ¿Existe regulación del ¨Lean Construction” en España? 6. ¿Cómo debería ser la regulación ¨Lean Construction” en España? 7. ¿Cuál es la relación del “Lean Construction” con el “Project & Construction Management”? 8. ¿Cómo debería ser la regulación de “Lean Construction” en España considerando su relación con el “Project & Construction Management”? Las preguntas indicadas las hemos respondido detalladamente en el presente trabajo, a continuación se resume las respuestas a dichas preguntas: 1. El “Lean Construction” surge en agosto de 1992, cuando el investigador finlandés Lauri Koskela publicó en la Universidad de Stanford el reporte TECHNICAL REPORT N° 72 titulado “Application of the New Production Philosophy to Construction”. Un año más tarde el Dr. Koskela invitó a un grupo de especialistas en construcción al primer workshop de esta materia en Finlandia, dando origen al International Group for Lean Construction (IGLC) lo que ha permitido extender la filosofía a EEUU, Europa, América, Asia, Oceanía y África. “Lean Construction” es un sistema basado en el enfoque “Lean Production” desarrollado en Japón por Toyota Motors a partir de los años cincuenta, sistema que permitió a sus fábricas producir unidades con mayor eficiencia que las industrias americanas, con menores recursos, en menor tiempo, y con un número menor de errores de fabricación. 2. El sistema “Lean Construction” busca maximizar el valor y disminuir las pérdidas de los proyectos generando una coordinación eficiente entre los involucrados, manejando un proyecto como un sistema de producción, estrechando la colaboración entre los participantes de los proyectos, capacitándoles y empoderándoles, fomentando una cultura de cambio. Su propósito es desarrollar un proceso de construcción en el que no hayan accidentes, ni daños a equipos, instalaciones, entorno y comunidad, que se realice en conformidad con los requerimientos contractuales, sin defectos, en el plazo requerido, respetando los costes presupuestados y con un claro enfoque en la eliminación o reducción de las pérdidas, es decir, las actividades que no generen beneficios. El “Last Planner System”, o “Sistema del Último Planificador”, es un sistema del “Lean Construction” que por su propia naturaleza protege a la planificación y, por ende, ayuda a maximizar el valor y minimizar las pérdidas, optimizando de manera sustancial los sistemas de seguridad y salud. El “Lean Construction” se inició como un concepto enfocado a la ejecución de las obras, posteriormente se aplicó la filosofía a todas las etapas del proyecto. Actualmente considera el desarrollo total de un proyecto, desde que nace la idea hasta la culminación de la obra y puesta en marcha, considerando el ciclo de vida completo del proyecto. Es una filosofía de gestión, metodologías de trabajo y una cultura empresarial orientada a la eficiencia de los procesos y flujos. La filosofía “Lean Construction” se está expandiendo en todo el mundo, además está creciendo en su alcance, influyendo en la gestión contractual de los proyectos. Su primera evolución consistió en la creación del sistema “Lean Project Delivery System”, que es el concepto global de desarrollo de proyectos. Posteriormente, se proponen el “Target Value Design”, que consiste en diseñar de forma colaborativa para alcanzar los costes y el valor requerido, y el “Integrated Project Delivery”, en relación con sistemas de contratos relacionales (colaborativos) integrados, distintos a los contratos convencionales. 3. Se verificó que no existe regulación específica del ¨Lean Construction” en otros países, en otras palabras, no existe el agente con el nombre específico de “Especialista en Lean Construction” o similar, en consecuencia, es un agente adicional en el proyecto de la edificación, cuyas funciones y cometidos se pueden solapar con los del “Project Manager”, “Construction Manager”, “Contract Manager”, “Safety Manager”, entre otros. Sin embargo, se comprobó la existencia de formatos privados de contratos colaborativos de Integrated Project Delivery, los cuales podrían ser tomados como unas primeras referencias para futuras regulaciones. 4. Se verificó que sí existe demanda del ¨Lean Construction” en el desarrollo del presente trabajo, aunque aún su uso es incipiente, cada día existe más interesados en el tema. 5. No existe regulación del ¨Lean Construction” en España. 6. Uno de los objetivos fundamentales de esta tesis es el de regular esta figura cuando actúe en un proyecto, definir y realizar una estructura de Agente de la Edificación, según la Ley de Ordenación de la Edificación (LOE), y de esta manera poder introducirla dentro de la Legislación Española, protegiéndola de eventuales responsabilidades civiles. En España existe jurisprudencia (sentencias de los tribunales de justicia españoles) con jurisdicción civil basada en la LOE para absolver o condenar a agentes de la edificación que son definidos en los tribunales como “gestores constructivos” o similares. Por este motivo, en un futuro los tribunales podrían dictaminar responsabilidades solidarias entre el especialista “Lean Construction” y otros agentes del proyecto, dependiendo de sus actuaciones, y según se implemente el “Lean Project Delivery System”, el “Target Value Design” y el “Integrated Project Delivery”. Por otro lado, es posible que el nivel de actuación del especialista “Lean Construcción” pueda abarcar la gestión del diseño, la gestión de la ejecución material (construcción), la gestión de contratos, o la gestión integral de todo el proyecto de edificación, esto último, en concordancia con la última Norma ISO 21500:2012 o UNE-ISO 21500:2013 Directrices para la dirección y gestión de proyectos. En consecuencia, se debería incorporar adecuadamente a uno o más agentes de la edificación en la LOE de acuerdo a sus funciones y responsabilidades según los niveles de actuación del “Especialista en Lean Construction”. Se propone la creación de los siguientes agentes: Gestor del Diseño, Gestor Constructivo y Gestor de Contratos, cuyas definiciones están desarrolladas en este trabajo. Estas figuras son definidas de manera general, puesto que cualquier “Project Manager” o “DIPE”, gestor BIM (Building Information Modeling), o similar, puede actuar como uno o varios de ellos. También se propone la creación del agente “Gestor de la Construcción sin Pérdidas”, como aquel agente que asume las actuaciones del “gestor de diseño”, “gestor constructivo” y “gestor de contratos” con un enfoque en los principios del Lean Production. 7. En la tesis se demuestra, por medio del uso de la ISO 21500, que ambos sistemas son complementarios, de manera que los proyectos pueden tener ambos enfoques y ser compatibilizados. Un proyecto que use el “Project & Construction Management” puede perfectamente apoyarse en las herramientas y técnicas del “Lean Construction” para asegurar la eliminación o reducción de las pérdidas, es decir, las actividades que no generen valor, diseñando el sistema de producción, el sistema de diseño o el sistema de contratos. 8. Se debería incorporar adecuadamente al agente de la edificación “Especialista en Lean Construction” o similar y al agente ¨Especialista en Project & Construction Management” o DIPE en la Ley de Ordenación de la Edificación (LOE) de acuerdo a sus funciones y responsabilidades, puesto que la jurisprudencia se ha basado para absolver o condenar en la referida Ley. Uno de los objetivos fundamentales de esta tesis es el de regular la figura del “Especialista en Lean Construction” cuando actúa simultáneamente con el DIPE, y realizar una estructura de Agente de la Edificación según la LOE, y de esta manera protegerlo de eventuales responsabilidades solidarias. Esta investigación comprueba que la propuesta de definición del agente de edificación DIPE, según la LOE, presentada en la tesis doctoral del Doctor Manuel Soler Severino es compatible con las nuevas definiciones propuestas. El agente DIPE puede asumir los roles de los diferentes gestores propuestos en esta tesis si es que se especializa en dichas materias, o, si lo estima pertinente, recomendar sus contrataciones. ABSTRACT This work is based on the Lean Construction philosophy; an analysis is made herein with regard to the situation of this philosophy in the building sector within the international and Spanish context, replying to the following questions: 1. How did the concept of Lean Construction emerge? 2. Which are the activities, functions and objectives of Lean Construction? 3. Are there regulations on Lean Construction in other countries? 4. Is there a demand for Lean Construction in Spain? 5. Are there regulations on Lean Construction in Spain? 6. How should regulations on Lean Construction be developed in Spain? 7. What is the relationship between Lean Construction and the Project & Construction Management? 8. How should regulations on Lean Construction be developed in Spain considering its relationship with the Project & Construction Management? We have answered these questions in detail here and the replies are summarized as follows: 1. The concept of Lean Construction emerged in august of 1992, when Finnish researcher Lauri Koskela published in Stanford University TECHNICAL REPORT N° 72 entitled “Application of the New Production Philosophy to Construction”. A year later, Professor Koskela invited a group of construction specialists to Finland to the first workshop conducted on this matter; thus, the International Group for Lean Construction (IGLC) was established, which has contributed to extending the philosophy to the United States, Europe, the Americas, Asia, Oceania, and Africa. Lean Construction is a system based on the Lean Production approach, which was developed in Japan by Toyota Motors in the 1950s. Thanks to this system, the Toyota plants were able to produce more units, with greater efficiency than the American industry, less resources, in less time, and with fewer manufacturing errors. 2. The Lean Construction system aims at maximizing the value of projects while reducing waste, producing an effective coordination among those involved; it manages projects as a production system, enhancing collaboration between the parties that participate in the projects while building their capacities, empowering them, and promoting a culture of change. Its purpose is to develop a construction process free of accidents, without damages to the equipment, facilities, environment and community, flawless, in accordance with contractual requirements, within the terms established, respecting budgeted costs, and with a clear approach to eliminating or reducing waste, that is, activities that do not generate benefits. The Last Planner System is a Lean Construction system, which by its own nature protects planning and, therefore, helps to maximize the value and minimize waste, optimizing substantially the safety and health systems. Lean Construction started as a concept focused on the execution of works, and subsequently the philosophy was applied to all the stages of the project. At present it considers the project’s total development, since the time ideas are born until the completion and start-up of the work, taking into account the entire life cycle of the project. It is a philosophy of management, work methodologies, and entrepreneurial culture aimed at the effectiveness of processes and flows. The Lean Construction philosophy is extending all over the world and its scope is becoming broader, having greater influence on the contractual management of projects. It evolved initially through the creation of the Lean Project Delivery System, a global project development concept. Later on, the Target Value Design was developed, based on collaborative design to achieve the costs and value required, as well as the Integrated Project Delivery, in connection with integrated relational (collaborative) contract systems, as opposed to conventional contracts. 3. It was verified that no specific regulations on Lean Construction exist in other countries, in other words, there are no agents with the specific name of “Lean Construction Specialist” or other similar names; therefore, it is an additional agent in building projects, which functions and objectives can overlap those of the Project Manager, Construction Manager, Contract Manager, or Safety Manager, among others. However, the existence of private collaborative contracts of Integrated Project Delivery was confirmed, which could be considered as first references for future regulations. 4. There is a demand for Lean Construction in the development of this work; even though it is still emerging, there is a growing interest in this topic. 5. There are no regulations on Lean Construction in Spain. 6. One of the main objectives of this thesis is to regulate this role when acting in a project, and to define and develop a Building Agent structure, according to the Building Standards Law (LOE by its acronym in Spanish), in order to be able to incorporate it into the Spanish law, protecting it from civil liabilities. In Spain there is jurisprudence in civil jurisdiction based on the LOE to acquit or convict building agents, which are defined in the courts as “construction managers” or similar. For this reason, courts could establish in the future joint and several liabilities between the Lean Construction Specialist and other agents of the project, depending on their actions and based on the implementation of the Lean Project Delivery System, the Target Value Design, and the Integrated Project Delivery. On the other hand, it is possible that the level of action of the Lean Construction Specialist may comprise design management, construction management and contract management, or the integral management of the entire building project in accordance with the last ISO 21500:2012 or UNE-ISO 21500:2013, guidelines for the management of projects. Accordingly, one or more building agents should be appropriately incorporated into the LOE according to their functions and responsibilities and based on the levels of action of the Lean Construction Specialist. The creation of the following agents is proposed: Design Manager, Construction Manager, and Contract Manager, which definitions are developed in this work. These agents are defined in general, since any Project Manager or DIPE, Building Information Modeling (BIM) Manager or similar, may act as one or as many of them. The creation of the Lean Construction Manager is also proposed, as the agent that takes on the role of the Design Manager, Construction Manager and Contract Manager with a focus on the Lean Production principles. 7. In the thesis it is demonstrated that through the implementation of the ISO 21500, both systems are supplementary, so projects may have both approaches and be compatible. A project that applies the Project & Construction Management may perfectly have the support of the tools, techniques and practices of Lean Construction to ensure the elimination or reduction of losses, that is, those activities that do not generate value, thus designing the production system, the design system, or the contract system. 8. The Lean Construction Specialist or similar and the Specialist in Project & Construction Management should be incorporated appropriately into the LOE according to their functions and responsibilities, since jurisprudence has been based on such Law to acquit or convict. One of the main objectives of this thesis is the regulate the role of the Lean Construction Specialist when acting simultaneously with the DIPE, and to develop a structure of the building agent, according to the LOE, and in this way protect such agent from joint and several liabilities. This research proves that the proposal to define the DIPE building agent, according to the LOE, and presented in the doctoral dissertation of Manuel Soler Severino, Ph.D. is compatible with the new definitions proposed. The DIPE agent may assume the roles of the different managers proposed in this thesis if he specializes in those topics or, if deemed pertinent, recommends that they be engaged.