30 resultados para Air quality monitoring stations.

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large cities across Europe, particularly for NO2. Modeling air quality in urban areas is rather complex since observed concentration values are a consequence of the interaction of multiple sources and processes that involve a wide range of spatial and temporal scales. Besides a consistent and robust multi-scale modeling system, comprehensive and flexible emission inventories are needed. This paper discusses the application of the WRF-SMOKE-CMAQ system to the Madrid city (Spain) to assess the contribution of the main emitting sectors in the region. A detailed emission inventory was compiled for this purpose. This inventory relies on bottom-up methods for the most important sources. It is coupled with the regional traffic model and it makes use of an extensive database of industrial, commercial and residential combustion plants. Less relevant sources are downscaled from national or regional inventories. This paper reports the methodology and main results of the source apportionment study performed to understand the origin of pollution (main sectors and geographical areas) and define clear targets for the abatement strategy. Finally the structure of the air quality monitoring is analyzed and discussed to identify options to improve the monitoring strategy not only in the Madrid city but the whole metropolitan area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In recent years, Spain has implemented a number of air quality control measures that are expected to lead to a future reduction in fine particle concentrations and an ensuing positive impact on public health. Objectives: We aimed to assess the impact on mortality attributable to a reduction in fine particle levels in Spain in 2014 in relation to the estimated level for 2007. Methods: To estimate exposure, we constructed fine particle distribution models for Spain for 2007 (reference scenario) and 2014 (projected scenario) with a spatial resolution of 16x16 km2. In a second step, we used the concentration-response functions proposed by cohort studies carried out in Europe (European Study of Cohorts for Air Pollution Effects and Rome longitudinal cohort) and North America (American Cancer Society cohort, Harvard Six Cities study and Canadian national cohort) to calculate the number of attributable annual deaths corresponding to all causes, all non-accidental causes, ischemic heart disease and lung cancer among persons aged over 25 years (2005-2007 mortality rate data). We examined the effect of the Spanish demographic shift in our analysis using 2007 and 2012 population figures. Results: Our model suggested that there would be a mean overall reduction in fine particle levels of 1mg/m3 by 2014. Taking into account 2007 population data, between 8 and 15 all-cause deaths per 100,000 population could be postponed annually by the expected reduction in fine particle levels. For specific subgroups, estimates varied from 10 to 30 deaths for all non-accidental causes, from 1 to 5 for lung cancer, and from 2 to 6 for ischemic heart disease. The expected burden of preventable mortality would be even higher in the future due to the Spanish population growth. Taking into account the population older than 30 years in 2012, the absolute mortality impact estimate would increase approximately by 18%. Conclusions: Effective implementation of air quality measures in Spain, in a scenario with a short-term projection, would amount to an appreciable decline infine particle concentrations, and this, in turn, would lead to notable health-related benefits. Recent European cohort studies strengthen the evidence of an association between long-term exposure to fine particles and health effects, and could enhance the health impact quantification in Europe. Air quality models can contribute to improved assessment of air pollution health impact estimates, particularly in study areas without air pollution monitoring data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An evaluation of the concentration levels of Particulate Matter (PM) was carried out in Madrid (Spain) by introducing the emissions from road dust resuspension. Road dust resuspension emission factors (EF) for different types of vehicles were calculated from EPA-AP42, a global resuspension factor of 0.097 g veh−1km−1 as described in Amato et al. (2010) and a rain-dependent correction factor. With these resuspension EFs, a simulation at street canyon level was performed with the OSPM model without rainfall. Subsequently, a simulation using the CMAQ model was implemented adding resuspension emissions affected by the rain. These data were compared with monitored data obtained from air quality stations. OSPM model simulations with resuspension EFs but without the effect of rainfall improve the PM estimates in about 20gm−3μ compared to the simulation with default EFs. Total emissions were calculated by adding the emissions estimated with resuspension EFs to the default PM emissions to be used by CMAQ. For the study in the Madrid Area, resuspension emissions are approximately of the same order of magnitude as inventoried emissions. On a monthly scale, rain effects are negligible for resuspension emissions due to the dry weather conditions of Spain. With the exception of April and May, the decrease in resuspension emissions is not >3%. The predicted PM10 concentration increases up to 9μ gm−3 on annual average for each station compared to the same scenario without resuspension. However, in both cases, PM 10 estimates with resuspension are still underestimating observations. It should be noted that although that accounting for resuspension improves the quality of model predictions, other PM sources (e.g., Saharan dust) were not considered in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo presenta un análisis y una metodología para la armonización de inventarios de emisiones utilizados en modelos de calidad del aire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Introduction 2. Air Quality Modeling system 3. Emission Inventories 4. Applications and Results 5. Conclusions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling is an essential tool for the development of atmospheric emission abatement measures and air quality plans. Most often these plans are related to urban environments with high emission density and population exposure. However, air quality modeling in urban areas is a rather challenging task. As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large urban areas across Europe, particularly for NO2. This also implies that emission inventories must satisfy a number of conditions such as consistency across the spatial scales involved in the analysis, consistency with the emission inventories used for regulatory purposes and versatility to match the requirements of different air quality and emission projection models. This study reports the modeling activities carried out in Madrid (Spain) highlighting the atmospheric emission inventory development and preparation as an illustrative example of the combination of models and data needed to develop a consistent air quality plan at urban level. These included a series of source apportionment studies to define contributions from the international, national, regional and local sources in order to understand to what extent local authorities can enforce meaningful abatement measures. Moreover, source apportionment studies were conducted in order to define contributions from different sectors and to understand the maximum feasible air quality improvement that can be achieved by reducing emissions from those sectors, thus targeting emission reduction policies to the most relevant activities. Finally, an emission scenario reflecting the effect of such policies was developed and the associated air quality was modeled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to assess the performance or multi-layer canopy parameterizations implemented in the mesoscale WRF model in order to understand their potential contribution to improve the description of energy fluxes and wind fields in the Madrid city. It was found that the Building Energy Model (BEP+BEM) parameterization yielded better results than the bulk standard scheme implemented in the Noah LSM, but very close to those of the Building Energy Parameterization (BEP). The later was deemed as the best option since data requirements and CPU time were smaller. Two annual runs were made to feed the CMAQ chemical-transport model to assess the impact of this feature in routinely air quality modelling activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper describes the advancement and evaluation of air quality-related impacts with the Atmospheric Evaluation and Research Integrated system for Spain (AERIS). In its current version, AERIS is able to provide estimates on the impacts of air quality over human health (PM2.5 and O3), crops and vegetation (O3). The modules that allow quantifying the before mentioned impacts were modeled by applying different approaches (mostly for the European context) present in scientific literature to the conditions of the Iberian Peninsula. This application was supported by reliable data sources, as well as by the good predictive capacity of AERIS for ambient concentrations. For validation purposes, the estimates of AERIS for impacts on human health (change in the statistical life expectancy-PM2.5) and vegetation (loss of wheat crops-O3) were compared against results from the SERCA project and GAINS estimates for two emission scenarios. In general, good results evidenced by reasonable correlation coefficients were obtained, therefore confirming the adequateness of the followed modeling approaches and the quality of AERIS predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La mejora de la calidad del aire es una tarea eminentemente interdisciplinaria. Dada la gran variedad de ciencias y partes involucradas, dicha mejora requiere de herramientas de evaluación simples y completamente integradas. La modelización para la evaluación integrada (integrated assessment modeling) ha demostrado ser una solución adecuada para la descripción de los sistemas de contaminación atmosférica puesto que considera cada una de las etapas involucradas: emisiones, química y dispersión atmosférica, impactos ambientales asociados y potencial de disminución. Varios modelos de evaluación integrada ya están disponibles a escala continental, cubriendo cada una de las etapas antesmencionadas, siendo el modelo GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) el más reconocido y usado en el contexto europeo de toma de decisiones medioambientales. Sin embargo, el manejo de la calidad del aire a escala nacional/regional dentro del marco de la evaluación integrada es deseable. Esto sin embargo, no se lleva a cabo de manera satisfactoria con modelos a escala europea debido a la falta de resolución espacial o de detalle en los datos auxiliares, principalmente los inventarios de emisión y los patrones meteorológicos, entre otros. El objetivo de esta tesis es presentar los desarrollos en el diseño y aplicación de un modelo de evaluación integrada especialmente concebido para España y Portugal. El modelo AERIS (Atmospheric Evaluation and Research Integrated system for Spain) es capaz de cuantificar perfiles de concentración para varios contaminantes (NO2, SO2, PM10, PM2,5, NH3 y O3), el depósito atmosférico de especies de azufre y nitrógeno así como sus impactos en cultivos, vegetación, ecosistemas y salud como respuesta a cambios porcentuales en las emisiones de sectores relevantes. La versión actual de AERIS considera 20 sectores de emisión, ya sea equivalentes a sectores individuales SNAP o macrosectores, cuya contribución a los niveles de calidad del aire, depósito e impactos han sido modelados a través de matrices fuentereceptor (SRMs). Estas matrices son constantes de proporcionalidad que relacionan cambios en emisiones con diferentes indicadores de calidad del aire y han sido obtenidas a través de parametrizaciones estadísticas de un modelo de calidad del aire (AQM). Para el caso concreto de AERIS, su modelo de calidad del aire “de origen” consistió en el modelo WRF para la meteorología y en el modelo CMAQ para los procesos químico-atmosféricos. La cuantificación del depósito atmosférico, de los impactos en ecosistemas, cultivos, vegetación y salud humana se ha realizado siguiendo las metodologías estándar establecidas bajo los marcos internacionales de negociación, tales como CLRTAP. La estructura de programación está basada en MATLAB®, permitiendo gran compatibilidad con software típico de escritorio comoMicrosoft Excel® o ArcGIS®. En relación con los niveles de calidad del aire, AERIS es capaz de proveer datos de media anual y media mensual, así como el 19o valor horario más alto paraNO2, el 25o valor horario y el 4o valor diario más altos para SO2, el 36o valor diario más alto para PM10, el 26o valor octohorario más alto, SOMO35 y AOT40 para O3. En relación al depósito atmosférico, el depósito acumulado anual por unidad de area de especies de nitrógeno oxidado y reducido al igual que de azufre pueden ser determinados. Cuando los valores anteriormente mencionados se relacionan con características del dominio modelado tales como uso de suelo, cubiertas vegetales y forestales, censos poblacionales o estudios epidemiológicos, un gran número de impactos puede ser calculado. Centrándose en los impactos a ecosistemas y suelos, AERIS es capaz de estimar las superaciones de cargas críticas y las superaciones medias acumuladas para especies de nitrógeno y azufre. Los daños a bosques se calculan como una superación de los niveles críticos de NO2 y SO2 establecidos. Además, AERIS es capaz de cuantificar daños causados por O3 y SO2 en vid, maíz, patata, arroz, girasol, tabaco, tomate, sandía y trigo. Los impactos en salud humana han sido modelados como consecuencia de la exposición a PM2,5 y O3 y cuantificados como pérdidas en la esperanza de vida estadística e indicadores de mortalidad prematura. La exactitud del modelo de evaluación integrada ha sido contrastada estadísticamente con los resultados obtenidos por el modelo de calidad del aire convencional, exhibiendo en la mayoría de los casos un buen nivel de correspondencia. Debido a que la cuantificación de los impactos no es llevada a cabo directamente por el modelo de calidad del aire, un análisis de credibilidad ha sido realizado mediante la comparación de los resultados de AERIS con los de GAINS para un escenario de emisiones determinado. El análisis reveló un buen nivel de correspondencia en las medias y en las distribuciones probabilísticas de los conjuntos de datos. Las pruebas de verificación que fueron aplicadas a AERIS sugieren que los resultados son suficientemente consistentes para ser considerados como razonables y realistas. En conclusión, la principal motivación para la creación del modelo fue el producir una herramienta confiable y a la vez simple para el soporte de las partes involucradas en la toma de decisiones, de cara a analizar diferentes escenarios “y si” con un bajo coste computacional. La interacción con políticos y otros actores dictó encontrar un compromiso entre la complejidad del modeladomedioambiental con el carácter conciso de las políticas, siendo esto algo que AERIS refleja en sus estructuras conceptual y computacional. Finalmente, cabe decir que AERIS ha sido creado para su uso exclusivo dentro de un marco de evaluación y de ninguna manera debe ser considerado como un sustituto de los modelos de calidad del aire ordinarios. ABSTRACT Improving air quality is an eminently inter-disciplinary task. The wide variety of sciences and stakeholders that are involved call for having simple yet fully-integrated and reliable evaluation tools available. Integrated AssessmentModeling has proved to be a suitable solution for the description of air pollution systems due to the fact that it considers each of the involved stages: emissions, atmospheric chemistry, dispersion, environmental impacts and abatement potentials. Some integrated assessment models are available at European scale that cover each of the before mentioned stages, being the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model the most recognized and widely-used within a European policy-making context. However, addressing air quality at the national/regional scale under an integrated assessment framework is desirable. To do so, European-scale models do not provide enough spatial resolution or detail in their ancillary data sources, mainly emission inventories and local meteorology patterns as well as associated results. The objective of this dissertation is to present the developments in the design and application of an Integrated Assessment Model especially conceived for Spain and Portugal. The Atmospheric Evaluation and Research Integrated system for Spain (AERIS) is able to quantify concentration profiles for several pollutants (NO2, SO2, PM10, PM2.5, NH3 and O3), the atmospheric deposition of sulfur and nitrogen species and their related impacts on crops, vegetation, ecosystems and health as a response to percentual changes in the emissions of relevant sectors. The current version of AERIS considers 20 emission sectors, either corresponding to individual SNAP sectors or macrosectors, whose contribution to air quality levels, deposition and impacts have been modeled through the use of source-receptor matrices (SRMs). Thesematrices are proportionality constants that relate emission changes with different air quality indicators and have been derived through statistical parameterizations of an air qualitymodeling system (AQM). For the concrete case of AERIS, its parent AQM relied on the WRF model for meteorology and on the CMAQ model for atmospheric chemical processes. The quantification of atmospheric deposition, impacts on ecosystems, crops, vegetation and human health has been carried out following the standard methodologies established under international negotiation frameworks such as CLRTAP. The programming structure isMATLAB ® -based, allowing great compatibility with typical software such as Microsoft Excel ® or ArcGIS ® Regarding air quality levels, AERIS is able to provide mean annual andmean monthly concentration values, as well as the indicators established in Directive 2008/50/EC, namely the 19th highest hourly value for NO2, the 25th highest daily value and the 4th highest hourly value for SO2, the 36th highest daily value of PM10, the 26th highest maximum 8-hour daily value, SOMO35 and AOT40 for O3. Regarding atmospheric deposition, the annual accumulated deposition per unit of area of species of oxidized and reduced nitrogen as well as sulfur can be estimated. When relating the before mentioned values with specific characteristics of the modeling domain such as land use, forest and crops covers, population counts and epidemiological studies, a wide array of impacts can be calculated. When focusing on impacts on ecosystems and soils, AERIS is able to estimate critical load exceedances and accumulated average exceedances for nitrogen and sulfur species. Damage on forests is estimated as an exceedance of established critical levels of NO2 and SO2. Additionally, AERIS is able to quantify damage caused by O3 and SO2 on grapes, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat. Impacts on human health aremodeled as a consequence of exposure to PM2.5 and O3 and quantified as losses in statistical life expectancy and premature mortality indicators. The accuracy of the IAM has been tested by statistically contrasting the obtained results with those yielded by the conventional AQM, exhibiting in most cases a good agreement level. Due to the fact that impacts cannot be directly produced by the AQM, a credibility analysis was carried out for the outputs of AERIS for a given emission scenario by comparing them through probability tests against the performance of GAINS for the same scenario. This analysis revealed a good correspondence in the mean behavior and the probabilistic distributions of the datasets. The verification tests that were applied to AERIS suggest that results are consistent enough to be credited as reasonable and realistic. In conclusion, the main reason thatmotivated the creation of this model was to produce a reliable yet simple screening tool that would provide decision and policy making support for different “what-if” scenarios at a low computing cost. The interaction with politicians and other stakeholders dictated that reconciling the complexity of modeling with the conciseness of policies should be reflected by AERIS in both, its conceptual and computational structures. It should be noted however, that AERIS has been created under a policy-driven framework and by no means should be considered as a substitute of the ordinary AQM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emission inventories are databases that aim to describe the polluting activities that occur across a certain geographic domain. According to the spatial scale, the availability of information will vary as well as the applied assumptions, which will strongly influence its quality, accuracy and representativeness. This study compared and contrasted two emission inventories describing the Greater Madrid Region (GMR) under an air quality simulation approach. The chosen inventories were the National Emissions Inventory (NEI) and the Regional Emissions Inventory of the Greater Madrid Region (REI). Both of them were used to feed air quality simulations with the CMAQ modelling system, and the results were compared with observations from the air quality monitoring network in the modelled domain. Through the application of statistical tools, the analysis of emissions at cell level and cell – expansion procedures, it was observed that the National Inventory showed better results for describing on – road traffic activities and agriculture, SNAP07 and SNAP10. The accurate description of activities, the good characterization of the vehicle fleet and the correct use of traffic emission factors were the main causes of such a good correlation. On the other hand, the Regional Inventory showed better descriptions for non – industrial combustion (SNAP02) and industrial activities (SNAP03). It incorporated realistic emission factors, a reasonable fuel mix and it drew upon local information sources to describe these activities, while NEI relied on surrogation and national datasets which leaded to a poorer representation. Off – road transportation (SNAP08) was similarly described by both inventories, while the rest of the SNAP activities showed a marginal contribution to the overall emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salamanca is cataloged as one of the most polluted cities in Mexico. In order to observe the behavior and clarify the influence of wind parameters on the Sulphur Dioxide (SO2) concentrations a Self-Organizing Maps (SOM) Neural Network have been implemented at three monitoring locations for the period from January 1 to December 31, 2006. The maximum and minimum daily values of SO2 concentrations measured during the year of 2006 were correlated with the wind parameters of the same period. The main advantages of the SOM Neural Network is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. For each monitoring location, SOM classifications were evaluated with respect to pollution levels established by Health Authorities. The classification system can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a method based mainly on Data Fusion and Artificial Neural Networks to classify one of the most important pollutants such as Particulate Matter less than 10 micrometer in diameter (PM10) concentrations is proposed. The main objective is to classify in two pollution levels (Non-Contingency and Contingency) the pollutant concentration. Pollutant concentrations and meteorological variables have been considered in order to build a Representative Vector (RV) of pollution. RV is used to train an Artificial Neural Network in order to classify pollutant events determined by meteorological variables. In the experiments, real time series gathered from the Automatic Environmental Monitoring Network (AEMN) in Salamanca Guanajuato Mexico have been used. The method can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis examina las implicaciones técnicas, políticas y espaciales del aire urbano, y en concreto, de la calidad del aire, para tenerlo en cuenta desde una perspectiva arquitectónica. En oposición a formas de entender el aire como un vacío o como una metáfora, este proyecto propone abordarlo desde un acercamiento material y tecnológico, trayendo el entorno al primer plano y reconociendo sus múltiples agencias. Debido a la escasa bibliografía detectada en el campo de la arquitectura, el objetivo es construir un marco teórico-analítico para considerar el aire urbano. Para ello el trabajo construye Aeropolis, una metáfora heurística que describe el ensamblaje sociotecnico de la ciudad. Situada en la intersección de determinadas ramas de la filosofía de la cultura, los estudios sobre ciencia y tecnología y estudios feministas de la ciencia este nuevo paisaje conceptual ofrece una metodología y herramientas para abordar el objeto de estudio desde distintos ángulos. Estas herramientas metodológicas han sido desarrolladas en el contexto específico de Madrid, ciudad muy contaminada cuyo aire ha sido objeto de controversias políticas y sociales, y donde las políticas y tecnologías para reducir sus niveles no han sido exitosas. Para encontrar una implicación alternativa con el aire esta tesis propone un método de investigación de agentes invisibles a partir del análisis de sus dispositivos epistémicos. Se centra, en concreto, en los instrumentos que miden, visualizan y comunican la calidad del aire, proponiendo que no sólo lo representan, sino que son también instrumentos que diseñan el aire y la ciudad. La noción de “sensing” (en castellano medir y sentir) es expandida, reconociendo distintas prácticas que reconstruyen el aire de Madrid. El resultado de esta estrategia no es sólo la ampliación de los espacios desde los que relacionarnos con el aire, sino también la legitimación de prácticas existentes fuera de contextos científicos y administrativos, como por ejemplo prácticas relacionadas con el cuerpo, así como la redistribución de agencias entre más actores. Así, esta tesis trata sobre toxicidad, la Unión Europea, producción colaborativa, modelos de computación, dolores de cabeza, kits DIY, gases, cuerpos humanos, salas de control, sangre o políticos, entre otros. Los dispositivos que sirven de datos empíricos sirven como un ejemplo excepcional para investigar infraestructuras digitales, permitiendo desafiar nociones sobre Ciudades Inteligentes. La tesis pone especial atención en los efectos del aire en el espacio público, reconociendo los procesos de invisibilización que han sufrido sus infraestructuras de monitorización. Para terminar se exponen líneas de trabajo y oportunidades para la arquitectura y el diseño urbano a través de nuevas relaciones entre infraestructuras urbanas, el medio construido, espacios domésticos y públicos y humanos y no humanos, para crear nuevas ecologías políticas urbanas (queer). ABSTRACT This thesis examines the technical, political and spatial implications of urban air, and more specifically "air quality", in order to consider it from an architectural perspective. In opposition to understandings of the air either as a void or as a metaphor, this project proposes to inspect it from a material and technical approach, bringing the background to the fore and acknowledging its multiple agencies. Due to the scarce bibliography within the architectural field, its first aim is to construct a theoretical and analytical framework from which to consider urban air. For this purpose, the work attempts the construction of Aeropolis, a heuristic metaphor that describes the city's aero socio-material assemblage. Located at the intersection of certain currents in cultural philosophy, science and technology studies as well as feminist studies in technoscience, this framework enables a methodology and toolset to be extracted in order to approach the subject matter from different angles. The methodological tools stemming from this purpose-built framework were put to the test in a specific case study: Madrid, a highly polluted city whose air has been subject to political and social controversies, and where no effective policies or technologies have been successful in reducing its levels of pollution. In order to engage with the air, the thesis suggests a method for researching invisible agents by examining the epistemic devices involved. It locates and focuses on the instruments that sense, visualise and communicate urban air, claiming that they do not only represent it, but are also instruments that design the air and the city. The notion of "sensing" is then expanded by recognising different practices which enact the air in Madrid. The work claims that the result of this is not only the opening up of spaces for engagement but also the legitimisation of existing practices outside science and policymaking environments, such as embodied practices, as well as the redistribution of agency among more actors. So this is a thesis about toxicity, the European Union, collaborative production, scientific computational models, headaches, DIY kits, gases, human bodies, control rooms, blood, or politicians, among many others. The devices found throughout the work serve as an exceptional substrate for an investigation of digital infrastructures, enabling to challenge Smart City tropes. There is special attention paid to the effects of the air on the public space, acknowledging the silencing processes these infrastructures have been subjected to. Finally there is an outline of the opportunities arising for architecture and urban design when taking the air into account, to create new (queer) urban political ecologies between the air, urban infrastructures, the built environment, public and domestic spaces, and humans and more than humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time monitoring of multimedia Quality of Experience is a critical task for the providers of multimedia delivery services: from television broadcasters to IP content delivery networks or IPTV. For such scenarios, meaningful metrics are required which can generate useful information to the service providers that overcome the limitations of pure Quality of Service monitoring probes. However, most of objective multimedia quality estimators, aimed at modeling the Mean Opinion Score, are difficult to apply to massive quality monitoring. Thus we propose a lightweight and scalable monitoring architecture called Qualitative Experience Monitoring (QuEM), based on detecting identifiable impairment events such as the ones reported by the customers of those services. We also carried out a subjective assessment test to validate the approach and calibrate the metrics. Preliminary results of this test set support our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta tesis se presenta una nueva aproximación para la realización de mapas de calidad del aire, con objeto de que esta variable del medio físico pueda ser tenida en cuenta en los procesos de planificación física o territorial. La calidad del aire no se considera normalmente en estos procesos debido a su composición y a la complejidad de su comportamiento, así como a la dificultad de contar con información fiable y contrastada. Además, la variabilidad espacial y temporal de las medidas de calidad del aire hace que sea difícil su consideración territorial y exige la georeferenciación de la información. Ello implica la predicción de medidas para lugares del territorio donde no existen datos. Esta tesis desarrolla un modelo geoestadístico para la predicción de valores de calidad del aire en un territorio. El modelo propuesto se basa en la interpolación de las medidas de concentración de contaminantes registradas en las estaciones de monitorización, mediante kriging ordinario, previa homogeneización de estos datos para eliminar su carácter local. Con el proceso de eliminación del carácter local, desaparecen las tendencias de las series muestrales de datos debidas a las variaciones temporales y espaciales de la calidad del aire. La transformación de los valores de calidad del aire en cantidades independientes del lugar de muestreo, se realiza a través de parámetros de uso del suelo y de otras variables características de la escala local. Como resultado, se obtienen unos datos de entrada espacialmente homogéneos, que es un requisito fundamental para la utilización de cualquier algoritmo de interpolación, en concreto, del kriging ordinario. Después de la interpolación, se aplica una retransformación de los datos para devolver el carácter local al mapa final. Para el desarrollo del modelo, se ha elegido como área de estudio la Comunidad de Madrid, por la disponibilidad de datos reales. Estos datos, valores de calidad del aire y variables territoriales, se utilizan en dos momentos. Un momento inicial, donde se optimiza la selección de los parámetros más adecuados para la eliminación del carácter local de las medidas y se desarrolla cada una de las etapas del modelo. Y un segundo momento, en el que se aplica en su totalidad el modelo desarrollado y se contrasta su eficacia predictiva. El modelo se aplica para la estimación de los valores medios y máximos de NO2 del territorio de estudio. Con la implementación del modelo propuesto se acomete la territorialización de los datos de calidad del aire con la reducción de tres factores clave para su efectiva integración en la planificación territorial o en el proceso de toma de decisiones asociado: incertidumbre, tiempo empleado para generar la predicción y recursos (datos y costes) asociados. El modelo permite obtener una predicción de valores del contaminante objeto de análisis en unas horas, frente a los periodos de modelización o análisis requeridos por otras metodologías. Los recursos necesarios son mínimos, únicamente contar con los datos de las estaciones de monitorización del territorio que, normalmente, están disponibles en las páginas web viii institucionales de los organismos gestores de las redes de medida de la calidad del aire. Por lo que respecta a las incertidumbres de la predicción, puede decirse que los resultados del modelo propuesto en esta tesis son estadísticamente muy correctos y que los errores medios son, en general, similares o menores que los encontrados con la aplicación de las metodologías existentes. ABSTRACT This thesis presents a new approach for mapping air quality, so that this variable of physical environment can be taken into account in physical or territorial planning. Ambient air quality is not normally considered in territorial planning mainly due to the complexity of its composition and behavior and the difficulty of counting with reliable and contrasted information. In addition, the wide spatial and temporal variability of the measurements of air quality makes his territorial consideration difficult and requires georeferenced information. This involves predicting measurements in the places of the territory where there are no data. This thesis develops a geostatistical model for predicting air quality values in a territory. The proposed model is based on the interpolation of measurements of pollutants from the monitoring stations, using ordinary kriging, after a detrending or removal of the local character of sampling values process. With the detrending process, the local character of the time series of sampling data, due to temporal and spatial variations of air quality, is removed. The transformation of the air quality values into site-independent quantities is performed using land use parameters and other characteristic parameters of local scale. This detrending of the monitoring data process results in a spatial homogeneous input set which is a prerequisite for a correct use of any interpolation algorithm, particularly, ordinary kriging. After the interpolation step, a retrending or retransformation is applied in order to incorporate the local character in the final map at places where no monitoring data is available. For the development of this model, the Community of Madrid is chosen as study area, because of the availability of actual data. These data, air quality values and local parameters, are used in two moments. A starting point, to optimize the selection of the most suitable indicators for the detrending process and to develop each one of the model stages. And a second moment, to fully implement the developed model and to evaluate its predictive power. The model is applied to estimate the average and maximum values of NO2 in the study territory. With the implementation of the proposed model, the territorialization of air quality data is undertaken with the reduction in three key factors for the effective integration of this parameter in territorial planning or in the associated decision making process: uncertainty, time taken to generate the prediction and associated resources (data and costs). This model allows the prediction of pollutant values in hours, compared to the implementation time periods required for other modeling or analysis methodologies. The required resources are also minimal, only having data from monitoring stations in the territory, that are normally available on institutional websites of the authorities responsible for air quality networks control and management. With regard to the prediction uncertainties, it can be concluded that the results of the proposed model are statistically very accurate and the mean errors are generally similar to or lower than those found with the application of existing methodologies.