5 resultados para Agricultural processing
em Universidad Politécnica de Madrid
Resumo:
One important issue emerging strongly in agriculture is related with the automatization of tasks, where the optical sensors play an important role. They provide images that must be conveniently processed. The most relevantimage processing procedures require the identification of green plants, in our experiments they come from barley and corn crops including weeds, so that some types of action can be carried out, including site-specific treatments with chemical products or mechanical manipulations. Also the identification of textures belonging to the soil could be useful to know some variables, such as humidity, smoothness or any others. Finally, from the point of view of the autonomous robot navigation, where the robot is equipped with the imaging system, some times it is convenient to know not only the soil information and the plants growing in the soil but also additional information supplied by global references based on specific areas. This implies that the images to be processed contain textures of three main types to be identified: green plants, soil and sky if any. This paper proposes a new automatic approach for segmenting these main textures and also to refine the identification of sub-textures inside the main ones. Concerning the green identification, we propose a new approach that exploits the performance of existing strategies by combining them. The combination takes into account the relevance of the information provided by each strategy based on the intensity variability. This makes an important contribution. The combination of thresholding approaches, for segmenting the soil and the sky, makes the second contribution; finally the adjusting of the supervised fuzzy clustering approach for identifying sub-textures automatically, makes the third finding. The performance of the method allows to verify its viability for automatic tasks in agriculture based on image processing
Resumo:
Mulch materials of different origins have been introduced into the agricultural sector in recent years alternatively to the standard polyethylene due to its environmental impact. This study aimed to evaluate the multivariate response of mulch materials over three consecutive years in a processing tomato (Solanum lycopersicon L.) crop in Central Spain. Two biodegradable plastic mulches (BD1, BD2), one oxo-biodegradable material (OB), two types of paper (PP1, PP2), and one barley straw cover (BS) were compared using two control treatments (standard black polyethylene [PE] and manual weed control [MW]). A total of 17 variables relating to yield, fruit quality, and weed control were investigated. Several multivariate statistical techniques were applied, including principal component analysis, cluster analysis, and discriminant analysis. A group of mulch materials comprised of OB and BD2 was found to be comparable to black polyethylene regarding all the variables considered. The weed control variables were found to be an important source of discrimination. The two paper mulches tested did not share the same treatment group membership in any case: PP2 presented a multivariate response more similar to the biodegradable plastics, while PP1 was more similar to BS and MW. Based on our multivariate approach, the materials OB and BD2 can be used as an effective, more environmentally friendly alternative to polyethylene mulches.
Resumo:
An extension of guarantees related to rainfall-related risks in the insurance of processing tomato crops has been accompanied with a large increase in claims in Western Spain, suggesting that damages may have been underestimated in previous years. A database was built by linking agricultural insurance records, meteorological data from local weather stations, and topographic data. The risk of rainfall-related damages in processing tomato in the Extremenian Guadiana river basin (W Spain) was studied using a logistic model. Risks during the growth of the crop and at harvesting were modelled separately. First, the risk related to rainfall was modelled as a function of meteorological, terrain and management variables. The resulting models were used to identify the variables responsible for rainfall-related damages, with a view to assess the potential impact of extending insurance coverage, and to develop an index to express the suitability of the cropping system for insurance. The analyses reveal that damages at different stages of crop development correspond to different hazards. The geographic dependence of the risk influences the scale at which the model might have validity, which together with the year dependency, the possibility of implementing index based insurances is questioned.
Resumo:
An extension of guarantees related to rainfall-related risks in the insurance of processing tomato crops hasbeen accompanied with a large increase in claims in Western Spain, suggesting that damages may havebeen underestimated in previous years. A database was built by linking agricultural insurance records,meteorological data from local weather stations, and topographic data. The risk of rainfall-related dam-ages in processing tomato in the Extremenian Guadiana river basin (W Spain) was studied using a logisticmodel. Risks during the growth of the crop and at harvesting were modelled separately. First, the riskrelated to rainfall was modelled as a function of meteorological, terrain and management variables. Theresulting models were used to identify the variables responsible for rainfall-related damages, with a viewto assess the potential impact of extending insurance coverage, and to develop an index to express thesuitability of the cropping system for insurance. The analyses reveal that damages at different stages ofcrop development correspond to different hazards. The geographic dependence of the risk influences the scale at which the model might have validity, which together with the year dependency, hampers the possibilityof implementing index based insurances is questioned.
Resumo:
Very high resolution remotely sensed images are an important tool for monitoring fragmented agricultural landscapes, which allows farmers and policy makers to make better decisions regarding management practices. An object-based methodology is proposed for automatic generation of thematic maps of the available classes in the scene, which combines edge-based and superpixel processing for small agricultural parcels. The methodology employs superpixels instead of pixels as minimal processing units, and provides a link between them and meaningful objects (obtained by the edge-based method) in order to facilitate the analysis of parcels. Performance analysis on a scene dominated by agricultural small parcels indicates that the combination of both superpixel and edge-based methods achieves a classification accuracy slightly better than when those methods are performed separately and comparable to the accuracy of traditional object-based analysis, with automatic approach.