13 resultados para Agent Approach
em Universidad Politécnica de Madrid
Resumo:
La unión de distintos sistemas software constituye un elemento principal de las nuevas Tecnologías de la Información y la Comunicación. La integración de entornos virtuales tridimensionales con agentes software inteligentes es el objetivo que persigue este trabajo de investigación. Para llevar a cabo esta integración se parte de la creación de un agente virtual, un personaje que es controlado por una mente desarrollada siguiendo un enfoque basado en agentes software. Se busca así dotar al sistema de cierto nivel de inteligencia, tomando como referencia el funcionamiento del cerebro humano. Lo que se consigue es que el agente capte los estímulos del entorno, los procese y genere comportamientos, tanto reactivos como deliberativos, que son ejecutados por el personaje. Los resultados obtenidos resaltan el dinamismo del sistema, a la vez que animan a seguir investigando en este campo lleno de aplicaciones directas y reales sobre el mundo. En conclusión, esta investigación busca y consigue un nuevo paso en el progreso de las nuevas tecnologías mediante una integración real de distintos sistemas software. ---ABSTRACT---The union of different software systems is a major element of Information and Communications Technology. The aim of this research is the integration of 3D virtual environments and intelligent software agents. This integration is based on the development of a virtual agent, a character that is controlled by a mind developed following a software agent approach. It is sought to provide the system with some intelligence level, taking the human brain function as a reference point. The consequence is that the agent captures environmental stimuli, processes them and creates reactive and deliberative behaviours that can be executed by the avatar. The findings emphasize the dynamism of the system as well as they encourage to research more in this field that has a lot of direct and real-life applications on the world. In conclusion, this research seeks and takes a new step in the progress of new technologies through a real integration of different software systems.
Resumo:
El auge y penetración de las nuevas tecnologías junto con la llamada Web Social están cambiando la forma en la que accedemos a la medicina. Cada vez más pacientes y profesionales de la medicina están creando y consumiendo recursos digitales de contenido clínico a través de Internet, surgiendo el problema de cómo asegurar la fiabilidad de estos recursos. Además, un nuevo concepto está apareciendo, el de pervasive healthcare o sanidad ubicua, motivado por pacientes que demandan un acceso a los servicios sanitarios en todo momento y en todo lugar. Este nuevo escenario lleva aparejado un problema de confianza en los proveedores de servicios sanitarios. Las plataformas de eLearning se están erigiendo como paradigma de esta nueva Medicina 2.0 ya que proveen un servicio abierto a la vez que controlado/supervisado a recursos digitales, y facilitan las interacciones y consultas entre usuarios, suponiendo una buena aproximación para esta sanidad ubicua. En estos entornos los problemas de fiabilidad y confianza pueden ser solventados mediante la implementación de mecanismos de recomendación de recursos y personas de manera confiable. Tradicionalmente las plataformas de eLearning ya cuentan con mecanismos de recomendación, si bien están más enfocados a la recomendación de recursos. Para la recomendación de usuarios es necesario acudir a mecanismos más elaborados como son los sistemas de confianza y reputación (trust and reputation) En ambos casos, tanto la recomendación de recursos como el cálculo de la reputación de los usuarios se realiza teniendo en cuenta criterios principalmente subjetivos como son las opiniones de los usuarios. En esta tesis doctoral proponemos un nuevo modelo de confianza y reputación que combina evaluaciones automáticas de los recursos digitales en una plataforma de eLearning, con las opiniones vertidas por los usuarios como resultado de las interacciones con otros usuarios o después de consumir un recurso. El enfoque seguido presenta la novedad de la combinación de una parte objetiva con otra subjetiva, persiguiendo mitigar el efecto de posibles castigos subjetivos por parte de usuarios malintencionados, a la vez que enriquecer las evaluaciones objetivas con información adicional acerca de la capacidad pedagógica del recurso o de la persona. El resultado son recomendaciones siempre adaptadas a los requisitos de los usuarios, y de la máxima calidad tanto técnica como educativa. Esta nueva aproximación requiere una nueva herramienta para su validación in-silico, al no existir ninguna aplicación que permita la simulación de plataformas de eLearning con mecanismos de recomendación de recursos y personas, donde además los recursos sean evaluados objetivamente. Este trabajo de investigación propone pues una nueva herramienta, basada en el paradigma de programación orientada a agentes inteligentes para el modelado de comportamientos complejos de usuarios en plataformas de eLearning. Además, la herramienta permite también la simulación del funcionamiento de este tipo de entornos dedicados al intercambio de conocimiento. La evaluación del trabajo propuesto en este documento de tesis se ha realizado de manera iterativa a lo largo de diferentes escenarios en los que se ha situado al sistema frente a una amplia gama de comportamientos de usuarios. Se ha comparado el rendimiento del modelo de confianza y reputación propuesto frente a dos modos de recomendación tradicionales: a) utilizando sólo las opiniones subjetivas de los usuarios para el cálculo de la reputación y por extensión la recomendación; y b) teniendo en cuenta sólo la calidad objetiva del recurso sin hacer ningún cálculo de reputación. Los resultados obtenidos nos permiten afirmar que el modelo desarrollado mejora la recomendación ofrecida por las aproximaciones tradicionales, mostrando una mayor flexibilidad y capacidad de adaptación a diferentes situaciones. Además, el modelo propuesto es capaz de asegurar la recomendación de nuevos usuarios entrando al sistema frente a la nula recomendación para estos usuarios presentada por el modo de recomendación predominante en otras plataformas que basan la recomendación sólo en las opiniones de otros usuarios. Por último, el paradigma de agentes inteligentes ha probado su valía a la hora de modelar plataformas virtuales complejas orientadas al intercambio de conocimiento, especialmente a la hora de modelar y simular el comportamiento de los usuarios de estos entornos. La herramienta de simulación desarrollada ha permitido la evaluación del modelo de confianza y reputación propuesto en esta tesis en una amplia gama de situaciones diferentes. ABSTRACT Internet is changing everything, and this revolution is especially present in traditionally offline spaces such as medicine. In recent years health consumers and health service providers are actively creating and consuming Web contents stimulated by the emergence of the Social Web. Reliability stands out as the main concern when accessing the overwhelming amount of information available online. Along with this new way of accessing the medicine, new concepts like ubiquitous or pervasive healthcare are appearing. Trustworthiness assessment is gaining relevance: open health provisioning systems require mechanisms that help evaluating individuals’ reputation in pursuit of introducing safety to these open and dynamic environments. Technical Enhanced Learning (TEL) -commonly known as eLearning- platforms arise as a paradigm of this Medicine 2.0. They provide an open while controlled/supervised access to resources generated and shared by users, enhancing what it is being called informal learning. TEL systems also facilitate direct interactions amongst users for consultation, resulting in a good approach to ubiquitous healthcare. The aforementioned reliability and trustworthiness problems can be faced by the implementation of mechanisms for the trusted recommendation of both resources and healthcare services providers. Traditionally, eLearning platforms already integrate recommendation mechanisms, although this recommendations are basically focused on providing an ordered classifications of resources. For users’ recommendation, the implementation of trust and reputation systems appears as the best solution. Nevertheless, both approaches base the recommendation on the information from the subjective opinions of other users of the platform regarding the resources or the users. In this PhD work a novel approach is presented for the recommendation of both resources and users within open environments focused on knowledge exchange, as it is the case of TEL systems for ubiquitous healthcare. The proposed solution adds the objective evaluation of the resources to the traditional subjective personal opinions to estimate the reputation of the resources and of the users of the system. This combined measure, along with the reliability of that calculation, is used to provide trusted recommendations. The integration of opinions and evaluations, subjective and objective, allows the model to defend itself against misbehaviours. Furthermore, it also allows ‘colouring’ cold evaluation values by providing additional quality information such as the educational capacities of a digital resource in an eLearning system. As a result, the recommendations are always adapted to user requirements, and of the maximum technical and educational quality. To our knowledge, the combination of objective assessments and subjective opinions to provide recommendation has not been considered before in the literature. Therefore, for the evaluation of the trust and reputation model defined in this PhD thesis, a new simulation tool will be developed following the agent-oriented programming paradigm. The multi-agent approach allows an easy modelling of independent and proactive behaviours for the simulation of users of the system, conforming a faithful resemblance of real users of TEL platforms. For the evaluation of the proposed work, an iterative approach have been followed, testing the performance of the trust and reputation model while providing recommendation in a varied range of scenarios. A comparison with two traditional recommendation mechanisms was performed: a) using only users’ past opinions about a resource and/or other users; and b) not using any reputation assessment and providing the recommendation considering directly the objective quality of the resources. The results show that the developed model improves traditional approaches at providing recommendations in Technology Enhanced Learning (TEL) platforms, presenting a higher adaptability to different situations, whereas traditional approaches only have good results under favourable conditions. Furthermore the promotion period mechanism implemented successfully helps new users in the system to be recommended for direct interactions as well as the resources created by them. On the contrary OnlyOpinions fails completely and new users are never recommended, while traditional approaches only work partially. Finally, the agent-oriented programming (AOP) paradigm has proven its validity at modelling users’ behaviours in TEL platforms. Intelligent software agents’ characteristics matched the main requirements of the simulation tool. The proactivity, sociability and adaptability of the developed agents allowed reproducing real users’ actions and attitudes through the diverse situations defined in the evaluation framework. The result were independent users, accessing to different resources and communicating amongst them to fulfil their needs, basing these interactions on the recommendations provided by the reputation engine.
Resumo:
This paper describes an agent-based approach for the simulation of air traffic management (ATM) in Europe that was designed to help analyze proposals for future ATM systems. This approach is able to represent new collaborative deci-sion processes for flow traffic management, it uses an intermediate level of ab-straction (useful for simulations at larger scales), and was designed to be a practi-cal tool (open and reusable) for the development of different ATM studies. It was successfully applied in three studies related to the design of future ATM systems in Europe.
Resumo:
This article proposes a MAS architecture for network diagnosis under uncertainty. Network diagnosis is divided into two inference processes: hypothesis generation and hypothesis confirmation. The first process is distributed among several agents based on a MSBN, while the second one is carried out by agents using semantic reasoning. A diagnosis ontology has been defined in order to combine both inference processes. To drive the deliberation process, dynamic data about the influence of observations are taken during diagnosis process. In order to achieve quick and reliable diagnoses, this influence is used to choose the best action to perform. This approach has been evaluated in a P2P video streaming scenario. Computational and time improvements are highlight as conclusions.
Resumo:
This paper discusses how agent technology can be applied to the design of advanced Information Systems for Decision Support. In particular, it describes the different steps and models that are necessary to engineer Decision Support Systems based on a multiagent architecture. The approach is illustrated by a case study in the traffic management domain.
Resumo:
The Agent-Based Modelling and simulation (ABM) is a rather new approach for studying complex systems withinteracting autonomous agents that has lately undergone great growth in various fields such as biology, physics, social science, economics and business. Efforts to model and simulate the highly complex cement hydration process have been made over the past 40 years, with the aim of predicting the performance of concrete and designing innovative and enhanced cementitious materials. The ABM presented here - based on previous work - focuses on the early stages of cement hydration by modelling the physical-chemical processes at the particle level. The model considers the cement hydration process as a time and 3D space system, involving multiple diffusing and reacting species of spherical particles. Chemical reactions are simulated by adaptively selecting discrete stochastic simulation for the appropriate reaction, whenever that is necessary. Interactions between particles are also considered. The model has been inspired by reported cellular automata?s approach which provides detailed predictions of cement microstructure at the expense of significant computational difficulty. The ABM approach herein seeks to bring about an optimal balance between accuracy and computational efficiency.
Resumo:
In this paper, an innovative approach to perform distributed Bayesian inference using a multi-agent architecture is presented. The final goal is dealing with uncertainty in network diagnosis, but the solution can be of applied in other fields. The validation testbed has been a P2P streaming video service. An assessment of the work is presented, in order to show its advantages when it is compared with traditional manual processes and other previous systems.
Resumo:
We describe the work on infusion of emotion into a limited-task autonomous spoken conversational agent situated in the domestic environment, using a need-inspired task-independent emotion model (NEMO). In order to demonstrate the generation of affect through the use of the model, we describe the work of integrating it with a natural-language mixed-initiative HiFi-control spoken conversational agent (SCA). NEMO and the host system communicate externally, removing the need for the Dialog Manager to be modified, as is done in most existing dialog systems, in order to be adaptive. The first part of the paper concerns the integration between NEMO and the host agent. The second part summarizes the work on automatic affect prediction, namely, frustration and contentment, from dialog features, a non-conventional source, in the attempt of moving towards a more user-centric approach. The final part reports the evaluation results obtained from a user study, in which both versions of the agent (non-adaptive and emotionally-adaptive) were compared. The results provide substantial evidences with respect to the benefits of adding emotion in a spoken conversational agent, especially in mitigating users' frustrations and, ultimately, improving their satisfaction.
Resumo:
The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe.
Resumo:
This paper argues about the utility of advanced knowledge-based techniques to develop web-based applications that help consumers in finding products within marketplaces in e-commerce. In particular, we describe the idea of model-based approach to develop a shopping agent that dynamically configures a product according to the needs and preferences of customers. Finally, the paper summarizes the advantages provided by this approach.
Resumo:
Cooperative systems are suitable for many types of applications and nowadays these system are vastly used to improve a previously defined system or to coordinate multiple devices working together. This paper provides an alternative to improve the reliability of a previous intelligent identification system. The proposed approach implements a cooperative model based on multi-agent architecture. This new system is composed of several radar-based systems which identify a detected object and transmit its own partial result by implementing several agents and by using a wireless network to transfer data. The proposed topology is a centralized architecture where the coordinator device is in charge of providing the final identification result depending on the group behavior. In order to find the final outcome, three different mechanisms are introduced. The simplest one is based on majority voting whereas the others use two different weighting voting procedures, both providing the system with learning capabilities. Using an appropriate network configuration, the success rate can be improved from the initial 80% up to more than 90%.
Resumo:
La presente tesis doctoral contribuye al problema del diagnóstico autonómico de fallos en redes de telecomunicación. En las redes de telecomunicación actuales, las operadoras realizan tareas de diagnóstico de forma manual. Dichas operaciones deben ser llevadas a cabo por ingenieros altamente cualificados que cada vez tienen más dificultades a la hora de gestionar debidamente el crecimiento exponencial de la red tanto en tamaño, complejidad y heterogeneidad. Además, el advenimiento del Internet del Futuro hace que la demanda de sistemas que simplifiquen y automaticen la gestión de las redes de telecomunicación se haya incrementado en los últimos años. Para extraer el conocimiento necesario para desarrollar las soluciones propuestas y facilitar su adopción por los operadores de red, se propone una metodología de pruebas de aceptación para sistemas multi-agente enfocada en simplificar la comunicación entre los diferentes grupos de trabajo involucrados en todo proyecto de desarrollo software: clientes y desarrolladores. Para contribuir a la solución del problema del diagnóstico autonómico de fallos, se propone una arquitectura de agente capaz de diagnosticar fallos en redes de telecomunicación de manera autónoma. Dicha arquitectura extiende el modelo de agente Belief-Desire- Intention (BDI) con diferentes modelos de diagnóstico que gestionan las diferentes sub-tareas del proceso. La arquitectura propuesta combina diferentes técnicas de razonamiento para alcanzar su propósito gracias a un modelo estructural de la red, que usa razonamiento basado en ontologías, y un modelo causal de fallos, que usa razonamiento Bayesiano para gestionar debidamente la incertidumbre del proceso de diagnóstico. Para asegurar la adecuación de la arquitectura propuesta en situaciones de gran complejidad y heterogeneidad, se propone un marco de argumentación que permite diagnosticar a agentes que estén ejecutando en dominios federados. Para la aplicación de este marco en un sistema multi-agente, se propone un protocolo de coordinación en el que los agentes dialogan hasta alcanzar una conclusión para un caso de diagnóstico concreto. Como trabajos futuros, se consideran la extensión de la arquitectura para abordar otros problemas de gestión como el auto-descubrimiento o la auto-optimización, el uso de técnicas de reputación dentro del marco de argumentación para mejorar la extensibilidad del sistema de diagnóstico en entornos federados y la aplicación de las arquitecturas propuestas en las arquitecturas de red emergentes, como SDN, que ofrecen mayor capacidad de interacción con la red. ABSTRACT This PhD thesis contributes to the problem of autonomic fault diagnosis of telecommunication networks. Nowadays, in telecommunication networks, operators perform manual diagnosis tasks. Those operations must be carried out by high skilled network engineers which have increasing difficulties to properly manage the growing of those networks, both in size, complexity and heterogeneity. Moreover, the advent of the Future Internet makes the demand of solutions which simplifies and automates the telecommunication network management has been increased in recent years. To collect the domain knowledge required to developed the proposed solutions and to simplify its adoption by the operators, an agile testing methodology is defined for multiagent systems. This methodology is focused on the communication gap between the different work groups involved in any software development project, stakeholders and developers. To contribute to overcoming the problem of autonomic fault diagnosis, an agent architecture for fault diagnosis of telecommunication networks is defined. That architecture extends the Belief-Desire-Intention (BDI) agent model with different diagnostic models which handle the different subtasks of the process. The proposed architecture combines different reasoning techniques to achieve its objective using a structural model of the network, which uses ontology-based reasoning, and a causal model, which uses Bayesian reasoning to properly handle the uncertainty of the diagnosis process. To ensure the suitability of the proposed architecture in complex and heterogeneous environments, an argumentation framework is defined. This framework allows agents to perform fault diagnosis in federated domains. To apply this framework in a multi-agent system, a coordination protocol is defined. This protocol is used by agents to dialogue until a reliable conclusion for a specific diagnosis case is reached. Future work comprises the further extension of the agent architecture to approach other managements problems, such as self-discovery or self-optimisation; the application of reputation techniques in the argumentation framework to improve the extensibility of the diagnostic system in federated domains; and the application of the proposed agent architecture in emergent networking architectures, such as SDN, which offers new capabilities of control for the network.
Resumo:
Internet está evolucionando hacia la conocida como Live Web. En esta nueva etapa en la evolución de Internet, se pone al servicio de los usuarios multitud de streams de datos sociales. Gracias a estas fuentes de datos, los usuarios han pasado de navegar por páginas web estáticas a interacturar con aplicaciones que ofrecen contenido personalizado, basada en sus preferencias. Cada usuario interactúa a diario con multiples aplicaciones que ofrecen notificaciones y alertas, en este sentido cada usuario es una fuente de eventos, y a menudo los usuarios se sienten desbordados y no son capaces de procesar toda esa información a la carta. Para lidiar con esta sobresaturación, han aparecido múltiples herramientas que automatizan las tareas más habituales, desde gestores de bandeja de entrada, gestores de alertas en redes sociales, a complejos CRMs o smart-home hubs. La contrapartida es que aunque ofrecen una solución a problemas comunes, no pueden adaptarse a las necesidades de cada usuario ofreciendo una solucion personalizada. Los Servicios de Automatización de Tareas (TAS de sus siglas en inglés) entraron en escena a partir de 2012 para dar solución a esta liminación. Dada su semejanza, estos servicios también son considerados como un nuevo enfoque en la tecnología de mash-ups pero centra en el usuarios. Los usuarios de estas plataformas tienen la capacidad de interconectar servicios, sensores y otros aparatos con connexión a internet diseñando las automatizaciones que se ajustan a sus necesidades. La propuesta ha sido ámpliamante aceptada por los usuarios. Este hecho ha propiciado multitud de plataformas que ofrecen servicios TAS entren en escena. Al ser un nuevo campo de investigación, esta tesis presenta las principales características de los TAS, describe sus componentes, e identifica las dimensiones fundamentales que los defines y permiten su clasificación. En este trabajo se acuña el termino Servicio de Automatización de Tareas (TAS) dando una descripción formal para estos servicios y sus componentes (llamados canales), y proporciona una arquitectura de referencia. De igual forma, existe una falta de herramientas para describir servicios de automatización, y las reglas de automatización. A este respecto, esta tesis propone un modelo común que se concreta en la ontología EWE (Evented WEb Ontology). Este modelo permite com parar y equiparar canales y automatizaciones de distintos TASs, constituyendo un aporte considerable paraa la portabilidad de automatizaciones de usuarios entre plataformas. De igual manera, dado el carácter semántico del modelo, permite incluir en las automatizaciones elementos de fuentes externas sobre los que razonar, como es el caso de Linked Open Data. Utilizando este modelo, se ha generado un dataset de canales y automatizaciones, con los datos obtenidos de algunos de los TAS existentes en el mercado. Como último paso hacia el lograr un modelo común para describir TAS, se ha desarrollado un algoritmo para aprender ontologías de forma automática a partir de los datos del dataset. De esta forma, se favorece el descubrimiento de nuevos canales, y se reduce el coste de mantenimiento del modelo, el cual se actualiza de forma semi-automática. En conclusión, las principales contribuciones de esta tesis son: i) describir el estado del arte en automatización de tareas y acuñar el término Servicio de Automatización de Tareas, ii) desarrollar una ontología para el modelado de los componentes de TASs y automatizaciones, iii) poblar un dataset de datos de canales y automatizaciones, usado para desarrollar un algoritmo de aprendizaje automatico de ontologías, y iv) diseñar una arquitectura de agentes para la asistencia a usuarios en la creación de automatizaciones. ABSTRACT The new stage in the evolution of the Web (the Live Web or Evented Web) puts lots of social data-streams at the service of users, who no longer browse static web pages but interact with applications that present them contextual and relevant experiences. Given that each user is a potential source of events, a typical user often gets overwhelmed. To deal with that huge amount of data, multiple automation tools have emerged, covering from simple social media managers or notification aggregators to complex CRMs or smart-home Hub/Apps. As a downside, they cannot tailor to the needs of every single user. As a natural response to this downside, Task Automation Services broke in the Internet. They may be seen as a new model of mash-up technology for combining social streams, services and connected devices from an end-user perspective: end-users are empowered to connect those stream however they want, designing the automations they need. The numbers of those platforms that appeared early on shot up, and as a consequence the amount of platforms following this approach is growing fast. Being a novel field, this thesis aims to shed light on it, presenting and exemplifying the main characteristics of Task Automation Services, describing their components, and identifying several dimensions to classify them. This thesis coins the term Task Automation Services (TAS) by providing a formal definition of them, their components (called channels), as well a TAS reference architecture. There is also a lack of tools for describing automation services and automations rules. In this regard, this thesis proposes a theoretical common model of TAS and formalizes it as the EWE ontology This model enables to compare channels and automations from different TASs, which has a high impact in interoperability; and enhances automations providing a mechanism to reason over external sources such as Linked Open Data. Based on this model, a dataset of components of TAS was built, harvesting data from the web sites of actual TASs. Going a step further towards this common model, an algorithm for categorizing them was designed, enabling their discovery across different TAS. Thus, the main contributions of the thesis are: i) surveying the state of the art on task automation and coining the term Task Automation Service; ii) providing a semantic common model for describing TAS components and automations; iii) populating a categorized dataset of TAS components, used to learn ontologies of particular domains from the TAS perspective; and iv) designing an agent architecture for assisting users in setting up automations, that is aware of their context and acts in consequence.