5 resultados para Adhesion of cells

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

EWT solar cells start from drilled wafers with approximately 100 holes/cm2. These holes act as stress concentrators leading to a reduction in the mechanical strength of this type of wafers. The viability of cells with higher density of holes has been studied. To this end, sets of wafers with different density of holes have been characterized. The ring on ring test has been employed and FE models have been developed to simulate the test. The statistical evaluation permits to draw conclusions about the reduction of the strength depending on the density of holes. Moreover, the stress concentration around the holes has been studied by means of the FE method employing the sub-modeling technique. The maximum principal stress of EWT wafers with twice the density of holes of commercial ones is almost the same. However, the mutual interaction between the stress concentration effects around neighboring holes is only observed for wafers with a density of 200 holes/cm2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solar cell is a solid state device that converts the energy of sunlight directly into electricity by the photovoltaic effect. When light with photon energies greater than the band gap is absorbed by a semiconductor material, free electrons and free holes are generated by optical excitation in the material. The main characteristic of a photovoltaic device is the presence of internal electric field able to separate the free electrons and holes so they can pass out of the material to the external circuit before they recombine. Numerical simulation of photovoltaic devices plays a crucial role in their design, performance prediction, and comprehension of the fundamental phenomena ruling their operation. The electrical transport and the optical behavior of the solar cells discussed in this work were studied with the simulation code D-AMPS-1D. This software is an updated version of the one-dimensional (1D) simulation program Analysis of Microelectronic and Photonic Devices (AMPS) that was initially developed at The Penn State University, USA. Structures such as homojunctions, heterojunctions, multijunctions, etc., resulting from stacking layers of different materials can be studied by appropriately selecting characteristic parameters. In this work, examples of cells simulation made with D-AMPS-1D are shown. Particularly, results of Ge photovoltaic devices are presented. The role of the InGaP buffer on the device was studied. Moreover, a comparison of the simulated electrical parameters with experimental results was performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a previously reported logic cell structure (see SPIE, vol. 2038, p. 67-77, 1993), the two types of cells present at the inner and ganglion cell layers of the vertebrate retina and their intracellular response, as well as their connections with each other, have been simulated. These cells are amacrines and ganglion cells. The main scheme of the authors' configuration is shown in a figure. These two types of cells, as well as some of their possible interconnections, have been implemented with the authors' previously reported optical-processing element. As it has been shown, the authors' logic structure is able to process two optical input binary signals, being the output two logical functions. Moreover, if a delayed feedback from one of the two possible outputs to one or both of the inputs is introduced, a very different behaviour is obtained. Depending on the value of the time delay, an oscillatory output can be obtained from a constant optical input signal. Period and length pulses are dependent on delay values, both external and internal, as well as on other control signals. Moreover, a chaotic behaviour can be obtained too under certain conditions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a simple mathematical model of tumor growth based on cancer stem cells. The model consists of four hyperbolic equations of first order to describe the evolution of different subpopulations of cells: cancer stem cells, progenitor cells, differentiated cells and dead cells. A fifth equation is introduced to model the evolution of the moving boundary. The system includes non-local terms of integral type in the coefficients. Under some restrictions in the parameters we show that there exists a unique homogeneous steady state which is stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of tandem stacks of Group III?V multijunction solar cells continues to improve rapidly, both through improved performance of the individual cells in the stack and throughi ncrease in the number of stacked cells. As the radiative efficiency of these individual cells increases, radiative coupling between the stacked cells becomes an increasingly important factor not only in cell design, but also in accurate efficiency measurement and in determining performance of cells and systems under varying spectral conditions in the field. Past modeling has concentrated on electroluminescent coupling between the cells, although photoluminescent coupling is shown to be important for cells operating near their maximum power point voltage or below or when junction defect recombination is significant. Extension of earlier models i sproposed to allow this non-negligible component of luminescent coupling to be included. Therefined model is validated by measurement of the closely related external emission from both single and double junction cells.