7 resultados para Added mass

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last years, there has been a continued growth in the number of offshore operations for handling large equipment and objects, with emphasis on installation and maintenance of devices for exploiting marine renewable energy like generators for harnessing wind, waves and currents energy. Considering the behaviour of these devices during manoeuvrings, and due to their size and by the interaction with the surrounding fluid, the effect of inertial forces and torques is very important, which requires a specific modelling. This paper especially discusses the masses and moments of inertia modelling problem, with the aim to use it in the simulation of the complex manoeuvres of these devices and in the automatic control systems designed for their offshore operations. Given the importance and complexity of the added mass modelling, a method for its early design identification, developed by the R&D Group on Marine Renewable Energy Technologies of the UPM (GITERM) and its use on special cases like emersion manoeuvres of devices from underwater to the surface will be presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La influencia de un fluido en las características dinámicas de estructuras se ha estudiado desde hace tiempo. Sin embargo muchos estudios se refieren a aplicaciones bajo el agua, como es el caso del sonar de un submarino por lo que el fluido circundante se considera líquido (sin efectos de compresibilidad). Más recientemente en aplicaciones acústicas y espaciales tales como antenas o paneles muy ligeros, ha sido estudiada la influencia en las características dinámicas de una estructura rodeada por un fluido de baja densidad. Por ejemplo se ha mostrado que el efecto del aire en el transmisor-reflector del Intelsat VI C-B con un diámetro de 3,2 metros y con un peso de sólo 34,7 kg disminuye la primera frecuencia en torno a un 20% con respecto a su valor en vacío. Por tanto es importante en el desarrollo de estas grandes y ligeras estructuras disponer de un método con el que estimar el efecto del fluido circundante sobre las frecuencias naturales de éstas. De esta manera se puede evitar el ensayo de la estructura en una cámara de vacío que para el caso de una gran antena o panel puede ser difícil y costoso. Se ha desarrollado un método de elementos de contorno (BEM) para la determinación del efecto del fluido en las características dinámicas de una placa circular. Una vez calculados analíticamente los modos de vibración de la placa en vacío, la matriz de masa añadida debido a la carga del fluido se determina por el método de elementos de contorno. Este método utiliza anillos circulares de manera que el número de elementos para obtener unos resultados precisos es muy bajo. Se utiliza un procedimiento de iteración para el cálculo de las frecuencias naturales del acoplamiento fluido-estructura para el caso de fluido compresible. Los resultados del método se comparan con datos experimentales y otros modelos teóricos mostrando la precisión y exactitud para distintas condiciones de contorno de la placa. Por otro lado, a veces la geometría de la placa no es circular sino casi-circular y se ha desarrollado un método de perturbaciones para determinar la influencia de un fluido incompresible en las características dinámicas de placas casi-circulares. El método se aplica a placas con forma elíptica y pequeña excentricidad. Por una parte se obtienen las frecuencias naturales y los modos de deformación de la placa vibrando en vacío. A continuación, se calculan los coeficientes adimensionales de masa virtual añadida (factores NAVMI). Se presentan los resultados de estos factores y el efecto del fluido en las frecuencias naturales. ABSTRACT The influence of the surrounding fluid on the dynamic characteristics of structures has been well known for many years. However most of these works were more concerned with underwater applications, such as the sonar of a submarine and therefore the surrounding fluid was considered a liquid (negligible compressibility effects). Recently for acoustical and spatial applications such as antennas or very light panels the influence on the dynamic characteristics of a structure surrounded by a fluid of low density has been studied. Thus it has been shown that the air effect for the Intelsat VI C-B transmit reflector with a diameter of 3,2 meters and weighting only 34,7 kg decreases the first modal frequency by 20% with respect to the value in vacuum. It is important then, in the development of these light and large structures to have a method that estimates the effect that the surrounding fluid will have on the natural frequencies of the structure. In this way it can be avoided to test the structure in a vacuum chamber which for a large antenna or panel can be difficult and expensive A BEM method for the determination of the effect of the surrounding fluid on the dynamic characteristics of a circular plate has been developed. After the modes of the plate in vacuum are calculated in an analytical form, the added mass matrix due to the fluid loading is determined by a boundary element method. This method uses circular rings so the number of elements to obtain an accurate result is very low. An iteration procedure for the computation of the natural frequencies of the couple fluid-structure system is presented for the case of the compressibility effect of air. Comparisons of the present method with various experimental data and other theories show the efficiency and accuracy of the method for any support condition of the plate. On the other hand, sometimes the geometry of the plate is not circular but almost-circular, so a perturbation method is developed to determine the influence of an incompressible fluid on the dynamic characteristics of almost-circular plates. The method is applied to plates of elliptical shape with low eccentricity. First, the natural frequencies and the mode shapes of the plate vibrating in vacuum are obtained. Next, the nondimensional added virtual mass coefficients (NAVMI factors) are calculated. Results of this factors and the effect of the fluid on the natural frequencies are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Performance of heave plates used in offshore structures is strongly influenced by their added mass and damping, which are affected by proximity to a boundary. A previous paper by the authors presented numerical simulations of the flow around a circular solid disk oscillating at varying elevations from seabed [1]. The force calculated was used to evaluate the added mass and damping coefficients for the disk. The simulations suggest that as the structure moves closer to the seabed the added mass and damping coefficients (Ca and Cb) increases continuously. In order to understand the physics behind the added mass and damping trends, when a heave plate is moving near a seabed or closer to the free surface, the flow characteristics around the heave plate are examined numerically in this paper. Flow around oscillating disks is dominated by generation and development of phase-dependent vortical structures, characterized by the KC number and the distance from the seabed or free surface to the heave plate. Numerical calculations presented in this paper have comprised the qualitative analysis of the vortex shedding and the investigation of the links between such vortex shedding and, on one hand the damping coefficient, and on the other hand, pairing mechanisms such as the shedding angle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La energía eólica marina es uno de los recursos energéticos con mayor proyección pudiendo contribuir a reducir el consumo de combustibles fósiles y a cubrir la demanda de energía en todo el mundo. El concepto de aerogenerador marino está basado en estructuras fijas como jackets o en plataformas flotantes, ya sea una semisumergible o una TLP. Se espera que la energía eólica offshore juegue un papel importante en el perfil de producción energética de los próximos años; por tanto, las turbinas eólicas deben hacerse más fables y rentables para ser competitivas frente a otras fuentes de energía. Las estructuras flotantes pueden experimentar movimientos resonantes en estados de la mar con largos períodos de oleaje. Estos movimientos disminuyen su operatividad y pueden causar daños en los componentes eléctricos de las turbinas y en las palas, también en los risers y moorings. La respuesta de la componente vertical del movimiento puede reducirse mediante diferentes actuaciones: (1) aumentando la amortiguación del sistema, (2) manteniendo el período del movimiento vertical fuera del rango de la energía de la ola, y (3) reduciendo las fuerzas de excitación verticales. Un ejemplo típico para llevar a cabo esta reducción son las "Heave Plates". Las heave plates son placas que se utilizan en la industria offshore debido a sus características hidrodinámicas, ya que aumentan la masa añadida y la amortiguación del sistema. En un análisis hidrodinámico convencional, se considera una estructura sometida a un oleaje con determinadas características y se evalúan las cargas lineales usando la teoría potencial. El amortiguamiento viscoso, que juega un papel crucial en la respuesta en resonancia del sistema, es un dato de entrada para el análisis. La tesis se centra principalmente en la predicción del amortiguamiento viscoso y de la masa añadida de las heave plates usadas en las turbinas eólicas flotantes. En los cálculos, las fuerzas hidrodinámicas se han obtenido con el f n de estudiar cómo los coeficientes hidrodinámicos de masa añadida5 y amortiguamiento varían con el número de KC, que caracteriza la amplitud del movimiento respecto al diámetro del disco. Por otra parte, se ha investigado la influencia de la distancia media de la ‘heave plate’ a la superficie libre o al fondo del mar, sobre los coeficientes hidrodinámicos. En este proceso, un nuevo modelo que describe el trabajo realizado por la amortiguación en función de la enstrofía, es descrito en el presente documento. Este nuevo enfoque es capaz de proporcionar una correlación directa entre el desprendimiento local de vorticidad y la fuerza de amortiguación global. El análisis también incluye el estudio de los efectos de la geometría de la heave plate, y examina la sensibilidad de los coeficientes hidrodinámicos al incluir porosidad en ésta. Un diseño novedoso de una heave plate, basado en la teoría fractal, también fue analizado experimentalmente y comparado con datos experimentales obtenidos por otros autores. Para la resolución de las ecuaciones de Navier Stokes se ha usado un solver basado en el método de volúmenes finitos. El solver usa las librerías de OpenFOAM (Open source Field Operation And Manipulation), para resolver un problema multifásico e incompresible, usando la técnica VOF (volume of fluid) que permite capturar el movimiento de la superficie libre. Los resultados numéricos han sido comparados con resultados experimentales llevados a cabo en el Canal del Ensayos Hidrodinámicos (CEHINAV) de la Universidad Politécnica de Madrid y en el Canal de Experiencias Hidrodinámicas (CEHIPAR) en Madrid, al igual que con otros experimentos realizados en la Escuela de Ingeniería Mecánica de la Universidad de Western Australia. Los principales resultados se presentan a continuación: 1. Para pequeños valores de KC, los coeficientes hidrodinámicos de masa añadida y amortiguamiento incrementan su valor a medida que el disco se aproxima al fondo marino. Para los casos cuando el disco oscila cerca de la superficie libre, la dependencia de los coeficientes hidrodinámicos es más fuerte por la influencia del movimiento de la superficie libre. 2. Los casos analizados muestran la existencia de un valor crítico de KC, donde la tendencia de los coeficientes hidrodinámicos se ve alterada. Dicho valor crítico depende de la distancia al fondo marino o a la superficie libre. 3. El comportamiento físico del flujo, para valores de KC cercanos a su valor crítico ha sido estudiado mediante el análisis del campo de vorticidad. 4. Introducir porosidad al disco, reduce la masa añadida para los valores de KC estudiados, pero se ha encontrado que la porosidad incrementa el valor del coeficiente de amortiguamiento cuando se incrementa la amplitud del movimiento, logrando un máximo de damping para un disco con 10% de porosidad. 5. Los resultados numéricos y experimentales para los discos con faldón, muestran que usar este tipo de geometrías incrementa la masa añadida cuando se compara con el disco sólido, pero reduce considerablemente el coeficiente de amortiguamiento. 6. Un diseño novedoso de heave plate basado en la teoría fractal ha sido experimentalmente estudiado a diferentes calados y comparado con datos experimentales obtenidos por otro autores. Los resultados muestran un comportamiento incierto de los coeficientes y por tanto este diseño debería ser estudiado más a fondo. ABSTRACT Offshore wind energy is one of the promising resources which can reduce the fossil fuel energy consumption and cover worldwide energy demands. Offshore wind turbine concepts are based on either a fixed structure as a jacket or a floating offshore platform like a semisubmersible, spar or tension leg platform. Floating offshore wind turbines have the potential to be an important part of the energy production profile in the coming years. In order to accomplish this wind integration, these wind turbines need to be made more reliable and cost efficient to be competitive with other sources of energy. Floating offshore artifacts, such oil rings and wind turbines, may experience resonant heave motions in sea states with long peak periods. These heave resonances may increase the system downtime and cause damage on the system components and as well as on risers and mooring systems. The heave resonant response may be reduced by different means: (1) increasing the damping of the system, (2) keeping the natural heave period outside the range of the wave energy, and (3) reducing the heave excitation forces. A typical example to accomplish this reduction are “Heave Plates”. Heave plates are used in the offshore industry due to their hydrodynamic characteristics, i.e., increased added mass and damping. Conventional offshore hydrodynamic analysis considers a structure in waves, and evaluates the linear and nonlinear loads using potential theory. Viscous damping, which is expected to play a crucial role in the resonant response, is an empirical input to the analysis, and is not explicitly calculated. The present research has been mainly focused on the prediction of viscous damping and added mass of floating offshore wind turbine heave plates. In the calculations, the hydrodynamic forces have been measured in order to compute how the hydrodynamic coefficients of added mass1 and damping vary with the KC number, which characterises the amplitude of heave motion relative to the diameter of the disc. In addition, the influence on the hydrodynamic coefficients when the heave plate is oscillating close to the free surface or the seabed has been investigated. In this process, a new model describing the work done by damping in terms of the flow enstrophy, is described herein. This new approach is able to provide a direct correlation between the local vortex shedding processes and the global damping force. The analysis also includes the study of different edges geometry, and examines the sensitivity of the damping and added mass coefficients to the porosity of the plate. A novel porous heave plate based on fractal theory has also been proposed, tested experimentally and compared with experimental data obtained by other authors for plates with similar porosity. A numerical solver of Navier Stokes equations, based on the finite volume technique has been applied. It uses the open-source libraries of OpenFOAM (Open source Field Operation And Manipulation), to solve 2 incompressible, isothermal immiscible fluids using a VOF (volume of fluid) phase-fraction based interface capturing approach, with optional mesh motion and mesh topology changes including adaptive re-meshing. Numerical results have been compared with experiments conducted at Technical University of Madrid (CEHINAV) and CEHIPAR model basins in Madrid and with others performed at School of Mechanical Engineering in The University of Western Australia. A brief summary of main results are presented below: 1. At low KC numbers, a systematic increase in added mass and damping, corresponding to an increase in the seabed proximity, is observed. Specifically, for the cases when the heave plate is oscillating closer to the free surface, the dependence of the hydrodynamic coefficients is strongly influenced by the free surface. 2. As seen in experiments, a critical KC, where the linear trend of the hydrodynamic coefficients with KC is disrupted and that depends on the seabed or free surface distance, has been found. 3. The physical behavior of the flow around the critical KC has been explained through an analysis of the flow vorticity field. 4. The porosity of the heave plates reduces the added mass for the studied porosity at all KC numbers, but the porous heave plates are found to increase the damping coefficient with increasing amplitude of oscillation, achieving a maximum damping coefficient for the heave plate with 10% porosity in the entire KC range. 5. Another concept taken into account in this work has been the heave plates with flaps. Numerical and experimental results show that using discs with flaps will increase added mass when compared to the plain plate but may also significantly reduce damping. 6. A novel heave plate design based on fractal theory has tested experimentally for different submergences and compared with experimental data obtained by other authors for porous plates. Results show an unclear behavior in the coefficients and should be studied further. Future work is necessary in order to address a series of open questions focusing on 3D effects, optimization of the heave plates shapes, etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La Energía eléctrica producida mediante tecnología eólica flotante es uno de los recursos más prometedores para reducir la dependencia de energía proveniente de combustibles fósiles. Esta tecnología es de especial interés en países como España, donde la plataforma continental es estrecha y existen pocas áreas para el desarrollo de estructuras fijas. Entre los diferentes conceptos flotantes, esta tesis se ha ocupado de la tipología semisumergible. Estas plataformas pueden experimentar movimientos resonantes en largada y arfada. En largada, dado que el periodo de resonancia es largo estos puede ser inducidos por efectos de segundo orden de deriva lenta que pueden tener una influencia muy significativa en las cargas en los fondeos. En arfada las fuerzas de primer orden pueden inducir grandes movimientos y por tanto la correcta determinación del amortiguamiento es esencial para la analizar la operatividad de la plataforma. Esta tesis ha investigado estos dos efectos, para ello se ha usado como caso base el diseño de una plataforma desarrollada en el proyecto Europeo Hiprwind. La plataforma se compone de 3 columnas cilíndricas unidas mediante montantes estructurales horizontales y diagonales, Los cilindros proporcionan flotabilidad y momentos adrizante. A la base de cada columna se le ha añadido un gran “Heave Plate” o placa de cierre. El diseño es similar a otros diseños previos (Windfloat). Se ha fabricado un modelo a escala de una de las columnas para el estudio detallado del amortiguamiento mediante oscilaciones forzadas. Las dimensiones del modelo (1m diámetro en la placa de cierre) lo hacen, de los conocidos por el candidato, el mayor para el que se han publicado datos. El diseño del cilindro se ha realizado de tal manera que permite la fijación de placas de cierre planas o con refuerzo, ambos modelos se han fabricado y analizado. El modelo con refuerzos es una reproducción exacta del diseño a escala real incluyendo detalles distintivos del mismo, siendo el más importante la placa vertical perimetral. Los ensayos de oscilaciones forzadas se han realizado para un rango de frecuencias, tanto para el disco plano como el reforzado. Se han medido las fuerzas durante los ensayos y se han calculado los coeficientes de amortiguamiento y de masa añadida. Estos coeficientes son necesarios para el cálculo del fondeo mediante simulaciones en el dominio del tiempo. Los coeficientes calculados se han comparado con la literatura existente, con cálculos potenciales y por ultimo con cálculos CFD. Para disponer de información relevante para el diseño estructural de la plataforma se han medido y analizado experimentalmente las presiones en la parte superior e inferior de cada placa de cierre. Para la correcta estimación numérica de las fuerzas de deriva lenta en la plataforma se ha realizado una campaña experimental que incluye ensayos con modelo cautivo de la plataforma completa en olas bicromaticas. Pese a que estos experimentos no reproducen un escenario de oleaje realista, los mismos permiten una verificación del modelo numérico mediante la comparación de fuerzas medidas en el modelo físico y el numérico. Como resultados de esta tesis podemos enumerar las siguientes conclusiones. 1. El amortiguamiento y la masa añadida muestran una pequeña dependencia con la frecuencia pero una gran dependencia con la amplitud del movimiento. siendo coherente con investigaciones existentes. 2. Las medidas con la placa de cierre reforzada con cierre vertical en el borde, muestra un amortiguamiento significativamente menor comparada con la placa plana. Esto implica que para ensayos de canal es necesario incluir estos detalles en el modelo. 3. La masa añadida no muestra grandes variaciones comparando placa plana y placa con refuerzos. 4. Un coeficiente de amortiguamiento del 6% del crítico se puede considerar conservador para el cálculo en el dominio de la frecuencia. Este amortiguamiento es equivalente a un coeficiente de “drag” de 4 en elementos de Morison cuadráticos en las placas de cierre usadas en simulaciones en el dominio del tiempo. 5. Se han encontrado discrepancias en algunos valores de masa añadida y amortiguamiento de la placa plana al comparar con datos publicados. Se han propuesto algunas explicaciones basadas en las diferencias en la relación de espesores, en la distancia a la superficie libre y también relacionadas con efectos de escala. 6. La presión en la placa con refuerzos son similares a las de la placa plana, excepto en la zona del borde donde la placa con refuerzo vertical induce una gran diferencias de presiones entre la cara superior e inferior. 7. La máxima diferencia de presión escala coherentemente con la fuerza equivalente a la aceleración de la masa añadida distribuida sobre la placa. 8. Las masas añadidas calculadas con el código potencial (WADAM) no son suficientemente precisas, Este software no contempla el modelado de placas de pequeño espesor con dipolos, la poca precisión de los resultados aumenta la importancia de este tipo de elementos al realizar simulaciones con códigos potenciales para este tipo de plataformas que incluyen elementos de poco espesor. 9. Respecto al código CFD (Ansys CFX) la precisión de los cálculos es razonable para la placa plana, esta precisión disminuye para la placa con refuerzo vertical en el borde, como era de esperar dado la mayor complejidad del flujo. 10. Respecto al segundo orden, los resultados, en general, muestran que, aunque la tendencia en las fuerzas de segundo orden se captura bien con los códigos numéricos, se observan algunas reducciones en comparación con los datos experimentales. Las diferencias entre simulaciones y datos experimentales son mayores al usar la aproximación de Newman, que usa únicamente resultados de primer orden para el cálculo de las fuerzas de deriva media. 11. Es importante remarcar que las tendencias observadas en los resultados con modelo fijo cambiarn cuando el modelo este libre, el impacto que los errores en las estimaciones de fuerzas segundo orden tienen en el sistema de fondeo dependen de las condiciones ambientales que imponen las cargas ultimas en dichas líneas. En cualquier caso los resultados que se han obtenido en esta investigación confirman que es necesaria y deseable una detallada investigación de los métodos usados en la estimación de las fuerzas no lineales en las turbinas flotantes para que pueda servir de guía en futuros diseños de estos sistemas. Finalmente, el candidato espera que esta investigación pueda beneficiar a la industria eólica offshore en mejorar el diseño hidrodinámico del concepto semisumergible. ABSTRACT Electrical power obtained from floating offshore wind turbines is one of the promising resources which can reduce the fossil fuel energy consumption and cover worldwide energy demands. The concept is the most competitive in countries, such as Spain, where the continental shelf is narrow and does not provide space for fixed structures. Among the different floating structures concepts, this thesis has dealt with the semisubmersible one. Platforms of this kind may experience resonant motions both in surge and heave directions. In surge, since the platform natural period is long, such resonance can be excited with second order slow drift forces and may have substantial influence on mooring loads. In heave, first order forces can induce significant motion, whose damping is a crucial factor for the platform downtime. These two topics have been investigated in this thesis. To this aim, a design developed during HiPRWind EU project, has been selected as reference case study. The platform is composed of three cylindrical legs, linked together by a set of structural braces. The cylinders provide buoyancy and restoring forces and moments. Large circular heave plates have been attached to their bases. The design is similar to other documented in literature (e.g. Windfloat), which implies outcomes could have a general value. A large scale model of one of the legs has been built in order to study heave damping through forced oscillations. The final dimensions of the specimen (one meter diameter discs) make it, to the candidate’s knowledge, the largest for which data has been published. The model design allows for the fitting of either a plain solid heave plate or a flapped reinforced one; both have been built. The latter is a model scale reproduction of the prototype heave plate and includes some distinctive features, the most important being the inclusion of a vertical flap on its perimeter. The forced oscillation tests have been conducted for a range of frequencies and amplitudes, with both the solid plain model and the vertical flap one. Forces have been measured, from which added mass and damping coefficients have been obtained. These are necessary to accurately compute time-domain simulations of mooring design. The coefficients have been compared with literature, and potential flow and CFD predictions. In order to provide information for the structural design of the platform, pressure measurements on the top and bottom side of the heave discs have been recorded and pressure differences analyzed. In addition, in order to conduct a detailed investigation on the numerical estimations of the slow-drift forces of the HiPRWind platform, an experimental campaign involving captive (fixed) model tests of a model of the whole platform in bichromatic waves has been carried out. Although not reproducing the more realistic scenario, these tests allowed a preliminary verification of the numerical model based directly on the forces measured on the structure. The following outcomes can be enumerated: 1. Damping and added mass coefficients show, on one hand, a small dependence with frequency and, on the other hand, a large dependence with the motion amplitude, which is coherent with previously published research. 2. Measurements with the prototype plate, equipped with the vertical flap, show that damping drops significantly when comparing this to the plain one. This implies that, for tank tests of the whole floater and turbine, the prototype plate, equipped with the flap, should be incorporated to the model. 3. Added mass values do not suffer large alterations when comparing the plain plate and the one equipped with a vertical flap. 4. A conservative damping coefficient equal to 6% of the critical damping can be considered adequate for the prototype heave plate for frequency domain analysis. A corresponding drag coefficient equal to 4.0 can be used in time domain simulations to define Morison elements. 5. When comparing to published data, some discrepancies in added mass and damping coefficients for the solid plain plate have been found. Explanations have been suggested, focusing mainly on differences in thickness ratio and distance to the free surface, and eventual scale effects. 6. Pressures on the plate equipped with the vertical flap are similar in magnitude to those of the plain plate, even though substantial differences are present close to the edge, where the flap induces a larger pressure difference in the reinforced case. 7. The maximum pressure difference scales coherently with the force equivalent to the acceleration of the added mass, distributed over the disc surface. 8. Added mass coefficient values predicted with the potential solver (WADAM) are not accurate enough. The used solver does not contemplate modeling thin plates with doublets. The relatively low accuracy of the results highlights the importance of these elements when performing potential flow simulations of offshore platforms which include thin plates. 9. For the full CFD solver (Ansys CFX), the accuracy of the computations is found reasonable for the plain plate. Such accuracy diminishes for the disc equipped with a vertical flap, an expected result considering the greater complexity of the flow. 10. In regards to second order effects, in general, the results showed that, although the main trend in the behavior of the second-order forces is well captured by the numerical predictions, some under prediction of the experimental values is visible. The gap between experimental and numerical results is more pronounced when Newman’s approximation is considered, making use exclusively of the mean drift forces calculated in the first-order solution. 11. It should be observed that the trends observed in the fixed model test may change when the body is free to float, and the impact that eventual errors in the estimation of the second-order forces may have on the mooring system depends on the characteristics of the sea conditions that will ultimately impose the maximum loads on the mooring lines. Nevertheless, the preliminary results obtained in this research do confirm that a more detailed investigation of the methods adopted for the estimation of the nonlinear wave forces on the FOWT would be welcome and may provide some further guidance for the design of such systems. As a final remark, the candidate hopes this research can benefit the offshore wind industry in improving the hydrodynamic design of the semi-submersible concept.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing use of very light structures in aerospace applications are given rise to the need of taking into account the effects of the surrounding media in the motion of a structure (as for instance, in modal testing of solar panels or antennae) as it is usually performed in the motion of bodies submerged in water in marine applications. New methods are in development aiming at to determine rigid-body properties (the center of mass position and inertia properties) from the results of oscillations tests (at low frequencies during modal testing, by exciting the rigid-body modes only) by using the equations of the rigid-body dynamics. As it is shown in this paper, the effect of the surrounding media significantly modifies the oscillation dynamics in the case of light structures and therefore this effect should be taken into account in the development of the above-mentioned methods. The aim of the paper is to show that, if a central point exists for the aerodynamic forces acting on the body, the motion equations for the small amplitude rotational and translational oscillations can be expressed in a form which is a generalization of the motion equations for a body in vacuum, thus allowing to obtain a physical idea of the motion and aerodynamic effects and also significantly simplifying the calculation of the solutions and the interpretation of the results. In the formulation developed here the translational oscillations and the rotational motion around the center of mass are decoupled, as is the case for the rigid-body motion in vacuum, whereas in the classical added mass formulation the six motion equations are coupled. Also in this paper the nonsteady motion of small amplitude of a rigid body submerged in an ideal, incompressible fluid is considered in order to define the conditions for the existence of the central point in the case of a three-dimensional body. The results here presented are also of interest in marine applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to conceptualise the key value drivers of mass customisation in order to provide a structured approach to explain the added value that customers attribute to mass customised products. We assume that the added value of mass customisation is ultimately reflected in an increased willingness to pay. Previous studies show diverse results concerning customers' willingness to pay for mass customised products. We contribute to the existing body of research by suggesting and discussing the influence of general product characteristics and factors of the mass customisation approach on the key value drivers of mass customisation. Furthermore, the development of a conceptual framework offers explanations for the dissimilarity in customers' willingness to pay and advances the knowledge about the value increment of mass customised products as perceived by customers.