2 resultados para Acrylic Resin Materials

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fluid flow and fabric compaction during vacuum assisted resin infusion (VARI) of composite materials was simulated using a level set-based approach. Fluid infusion through the fiber preform was modeled using Darcy’s equations for the fluid flow through a porous media. The stress partition between the fluid and the fiber bed was included by means of Terzaghi’s effective stress theory. Tracking the fluid front during infusion was introduced by means of the level set method. The resulting partial differential equations for the fluid infusion and the evolution of flow front were discretized and solved approximately using the finite differences method with a uniform grid discretization of the spatial domain. The model results were validated against uniaxial VARI experiments through an [0]8 E-glass plain woven preform. The physical parameters of the model were also independently measured. The model results (in terms of the fabric thickness, pressure and fluid front evolution during filling) were in good agreement with the numerical simulations, showing the potential of the level set method to simulate resin infusion

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer nanocomposites, specifically nanoclay-reinforced polymers, have attracted great interest as matrix materials for high temperature composite applications. Nanocomposites require relatively low dispersant loads to achieve significant property enhancements. These enhancements are mainly a consequence of the interfacial effects that result from dispersing the silicate nanolayers in the polymer matrix and the high in-plane strength, stiffness and aspect ratio of the lamellar nanoparticles. The montmorillonite (MMT) clay, modified with organic onium ions with long alkyl chains as Cloisites, has been widely used to obtain nanocomposites. The presence of reactive groups in organic onium ions can form chemical bonds with the polymer matrix which favours a very high exfoliation degree of the clay platelets in the nanocomposite (1,2)