21 resultados para Acerola (Malpighia emarginata DC.)
em Universidad Politécnica de Madrid
Resumo:
Pinus uncinata forms forests in the centre and southwest of the Alps and in the subalpine Pyrenees (at around 1700 – 2600 m) (Costa Tenorio et al., 1997). The species reaches the southwestern limit of its distribution at the top of Mount Castillo de Vinuesa (Soria, Spain). The small population on this mountain occupies just 66 ha, but is very important from a geobotanical viewpoint since it is just one of two populations (the other being in the Sierra de Gúdar range in Teruel, Spain) isolated from the main area where the species is found in the Iberian Peninsula (The Pyrenees)
Resumo:
The purpose of this work is to propose a structure for simulating power systems using behavioral models of nonlinear DC to DC converters implemented through a look-up table of gains. This structure is specially designed for converters whose output impedance depends on the load current level, e.g. quasi-resonant converters. The proposed model is a generic one whose parameters can be obtained by direct measuring the transient response at different operating points. It also includes optional functionalities for modeling converters with current limitation and current sharing in paralleling characteristics. The pusposed structured also allows including aditional characteristics of the DC to DC converter as the efficency as a function of the input voltage and the output current or overvoltage and undervoltage protections. In addition, this proposed model is valid for overdamped and underdamped situations.
Resumo:
Classical linear amplifiers such as A, AB and B offer very good linearity suitable for RF power amplifiers. However, its inherent low efficiency limits its use especially in base-stations that manage tens or hundreds of Watts. The use of linearization techniques such as Envelope Elimination and Restoration (EER) allow an increase of efficiency keeping good linearity. This technique requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier. In this paper, several alternatives are analyzed to implement the envelope amplifier based on a cascade association of a switched dc-dc converter and a linear regulator. A simplified version of this approach is also suitable to operate with Envelope Tracking technique.
Resumo:
This paper introduces a method to analyze and predict stability and transient performance of a distributed system where COTS (Commercial-off-the-shelf) modules share an input filter. The presented procedure is based on the measured data from the input and output terminals of the power modules. The required information for the analysis is obtained by performing frequency response measurements for each converter. This attained data is utilized to compute special transfer functions, which partly determine the source and load interactions within the converters. The system level dynamic description is constructed based on the measured and computed transfer functions introducing cross-coupling mechanisms within the system. System stability can be studied based on the well-known impedance- related minor-loop gain at an arbitrary interface within the system.
Resumo:
The AlGaN/GaN high-electron mobility transistors (HEMTs) have been considered as promising candidates for the next generation of high temperature, high frequency, high-power devices. The potential of GaN-based HEMTs may be improved using an AlInN barrier because of its better lattice match to GaN, resulting in higher sheet carrier densities without piezoelectric polarization [1]. This work has been focused on the study of AlInN HEMTs pulse and DC mode characterization at high temperature.
Resumo:
El objetivo de este proyecto es diseñar un sistema capaz de controlar la velocidad de rotación de un motor DC en función del valor de temperatura obtenido de un sensor. Para ello se generará con un microcontrolador una señal PWM, cuyo ciclo de trabajo estará en función de la temperatura medida. En lo que respecta a la fase de diseño, hay dos partes claramente diferenciadas, relativas al hardware y al software. En cuanto al diseño del hardware puede hacerse a su vez una división en dos partes. En primer lugar, hubo que diseñar la circuitería necesaria para adaptar los niveles de tensión entregados por el sensor de temperatura a los niveles requeridos por ADC, requerido para digitalizar la información para su posterior procesamiento por parte del microcontrolador. Por tanto hubo que diseñar capaz de corregir el offset y la pendiente de la función tensión-temperatura del sensor, a fin de adaptarlo al rango de tensión requerido por el ADC. Por otro lado, hubo que diseñar el circuito encargado de controlar la velocidad de rotación del motor. Este circuito estará basado en un transistor MOSFET en conmutación, controlado mediante una señal PWM como se mencionó anteriormente. De esta manera, al variar el ciclo de trabajo de la señal PWM, variará de manera proporcional la tensión que cae en el motor, y por tanto su velocidad de rotación. En cuanto al diseño del software, se programó el microcontrolador para que generase una señal PWM en uno de sus pines en función del valor entregado por el ADC, a cuya entrada está conectada la tensión obtenida del circuito creado para adaptar la tensión generada por el sensor. Así mismo, se utiliza el microcontrolador para representar el valor de temperatura obtenido en una pantalla LCD. Para este proyecto se eligió una placa de desarrollo mbed, que incluye el microcontrolador integrado, debido a que facilita la tarea del prototipado. Posteriormente se procedió a la integración de ambas partes, y testeado del sistema para comprobar su correcto funcionamiento. Puesto que el resultado depende de la temperatura medida, fue necesario simular variaciones en ésta, para así comprobar los resultados obtenidos a distintas temperaturas. Para este propósito se empleó una bomba de aire caliente. Una vez comprobado el funcionamiento, como último paso se diseñó la placa de circuito impreso. Como conclusión, se consiguió desarrollar un sistema con un nivel de exactitud y precisión aceptable, en base a las limitaciones del sistema. SUMMARY: It is obvious that day by day people’s daily life depends more on technology and science. Tasks tend to be done automatically, making them simpler and as a result, user life is more comfortable. Every single task that can be controlled has an electronic system behind. In this project, a control system based on a microcontroller was designed for a fan, allowing it to go faster when temperature rises or slowing down as the environment gets colder. For this purpose, a microcontroller was programmed to generate a signal, to control the rotation speed of the fan depending on the data acquired from a temperature sensor. After testing the whole design developed in the laboratory, the next step taken was to build a prototype, which allows future improvements in the system that are discussed in the corresponding section of the thesis.
Resumo:
With the advent of the Universal Technical Standard for Solar Home Systems, procedures to test the compliance of SHS fluorescent lamps with the standard have been developed. Definition of the laboratory testing procedures is a necessary step in any lamp quality assurance procedure. Particular attention has been paid to test simplicity and to affordability, in order to facilitate local application of the testing procedures, for example by the organisations which carry out electrification programmes. The set of test procedures has been applied to a representative collection of 42 lamps from many different countries, directly acquired in the current photovoltaic rural electrification market. Tests apply to: lamp resistance under normal operating conditions; lamp reliability under extreme conditions; under abnormal conditions; and lamp luminosity. Results are discussed and some recommendations for updating the relevant standard are given. The selected technical standard, together with the proposed testing procedures, form the basis of a complete quality assurance tool that can be applied locally in normal electrical laboratories. Full testing of a lamp requires less than one month, which is very reasonable on the context of quality assurance programmes
Resumo:
The genus Diplotaxis, comprising 32 or 34 species, plus several additional infraspecific taxa, displays a considerable degree of heterogeneity in the morphology, molecular markers, chromosome numbers and geographical amplitude of the species. The taxonomic relationships within the genus Diplotaxis were investigated by phenetic characterisation of germplasm belonging to 27 taxa of the genus, because there is an increasing interest in Diplotaxis, since some of its species (D. tenuifolia, D. muralis) are gathered or cultivated for human consumption, whereas others are frequent arable weeds (D. erucoides) in many European vineyards. Using a computer-aided vision system, 33 morpho-colorimetric features of seeds were electronically measured. The data were used to implement a statistical classifier, which is able to discriminate the taxa within the genus Diplotaxis, in order to compare the resulting species grouping with the current infrageneric systematics of this genus. Despite the high heterogeneity of the samples, due to the great intra-population variability, the stepwise Linear Discriminant Analysis method, applied to distinguish the groups, was able to reach over 80% correct identification. The results obtained allowed us to confirm the current taxonomic position of most taxa and suggested the taxonomic position of others for reconsideration.
Resumo:
Renewable energy hybrid systems and mini-grids for electrification of rural areas are known to be reliable and more cost efficient than grid extension or only-diesel based systems. However, there is still some uncertainty in some areas, for example, which is the most efficient way of coupling hybrid systems: AC, DC or AC-DC? With the use of Matlab/Simulink a mini-grid that connects a school, a small hospital and an ecotourism hostel has been modelled. This same mini grid has been coupled in the different possible ways and the system’s efficiency has been studied. In addition, while keeping the consumption constant, the generation sources and the consumption profile have been modified and the effect on the efficiency under each configuration has also been analysed. Finally different weather profiles have been introduced and, again, the effect on the efficiency of each system has been observed.
Resumo:
This paper analyzes the correlation between the fluctuations of the electrical power generated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical power time series from a large collection of photovoltaic inverters of a same plant is an impor- tant contribution in the context of models built upon simplified assumptions to overcome the absence of such data. This data set is divided into three different fluctuation categories with a clustering proce- dure which performs correctly with the clearness index and the wavelet variances. Afterwards, the time dependent correlation between the electrical power time series of the inverters is esti- mated with the wavelet transform. The wavelet correlation depends on the distance between the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time scales below one minute are low without dependence on the daily fluctuation level. For time scales above 20 minutes, positive high correlation values are obtained, and the decay rate with the distance depends on the daily fluctuation level. At intermediate time scales the correlation depends strongly on the daily fluctuation level. The proposed methods have been implemented using free software. Source code is available as supplementary material.
Resumo:
This work presents a behavioral-analytical hybrid loss model for a buck converter. The model has been designed for a wide operating frequency range up to 4MHz and a low power range (below 20W). It is focused on the switching losses obtained in the power MOSFETs. Main advantages of the model are the fast calculation time and a good accuracy. It has been validated by simulation and experimentally with one Ga, power transistor and two Si MOSFETs. Results show good agreement between measurements and the model.
Resumo:
This work presents a behavioral-analytical hybrid loss model for a buck converter. The model has been designed for a wide operating frequency range up to 4MHz and a low power range (below 20W). It is focused on the switching losses obtained in the power MOSFETs. Main advantages of the model are the fast calculation time (below 8.5 seconds) and a good accuracy, which makes this model suitable for the optimization process of the losses in the design of a converter. It has been validated by simulation and experimentally with one GaN power transistor and three Si MOSFETs. Results show good agreement between measurements and the model
Resumo:
In the last years, RF power amplifiers are taking advantage of the switched dc-dc converters to use them in several architectures that may improve the efficiency of the amplifier, keeping a good linearity. The use of linearization techniques such as Envelope Elimination and Restoration (EER) and Envelope Tracking (ET) requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier but theoretically the efficiency can be much higher than using the classical amplifiers belonging to classes A, B or AB. The purpose of this paper is to analyze the state of the art of the power converters used as envelope amplifiers in this application where a fast output voltage variation is required. The power topologies will be explored and several important parameters such as efficiency, bandwidth and output voltage range will be discussed.
Resumo:
The bandwidth achievable by using voltage mode control or current mode control in switch-mode power supply is limited by the switching frequency. Fast transient response requires high switching frequency, although lower switching frequencies could be more suitable for higher efficiency. This paper proposes the use of hysteretic control of the output capacitor $(C_{out})$ current to improve the dynamic response of the buck converter. An external voltage loop is required to accurately regulate the output voltage. The design of the hysteretic loop and the voltage loop are presented. Besides, it is presented a non-invasive current sensor that allows measuring the current in the capacitor. This strategy has been applied for DVS (dynamic voltage scaling) on a 5 MHz buck converter. Experimental results validate the proposed control technique and show fast transient response from 1.5 V to 2.5 V in 2 $mu{rm s}$.
Resumo:
The objective of this paper is to provide performance metrics for small-signal stability assessment of a given system architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC) derived from the behavior of an impedance-based sensitivity function. For each minor-loop gain defined at every system interface, a single number to state the robustness of stability is provided based on the computed maximum value of the corresponding sensitivity function. In order to compare various power-architecture solutions in terms of stability, a parameter providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system. It provides a meaningful metrics for system comparisons: the best system in terms of robust stability is the one that minimizes this index. In addition, the largest peak value within the system interfaces is given thus detecting the weakest point of the system in terms of robustness.