20 resultados para Accelerometer
em Universidad Politécnica de Madrid
Resumo:
Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device) as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user -independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human -robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone.
Resumo:
Laminatedglass is composed of two glass layers and a thin intermediate PVB layer, strongly influencing PVB's viscoelastic behaviour its dynamic response. While natural frequencies are relatively easily identified even with simplified FE models, damping ratios are not identified with such an ease. In order to determine to what extent external factors influence dampingidentification, different tests have been carried out. The external factors considered, apart from temperature, are accelerometers, connection cables and the effect of the glass layers. To analyse the influence of the accelerometers and their connection cables a laser measuring device was employed considering three possibilities: sample without instrumentation, sample with the accelerometers fixed and sample completely instrumented. When the sample is completely instrumented, accelerometer readings are also analysed. To take into consideration the effect of the glass layers, tests were realised both for laminatedglass and monolithic samples. This paper presents in depth data analysis of the different configurations and establishes criteria for data acquisition when testing laminatedglass.
Resumo:
This article focuses on the evaluation of a biometric technique based on the performance of an identifying gesture by holding a telephone with an embedded accelerometer in his/her hand. The acceleration signals obtained when users perform gestures are analyzed following a mathematical method based on global sequence alignment. In this article, eight different scores are proposed and evaluated in order to quantify the differences between gestures, obtaining an optimal EER result of 3.42% when analyzing a random set of 40 users of a database made up of 80 users with real attempts of falsification. Moreover, a temporal study of the technique is presented leeding to the need to update the template to adapt the manner in which users modify how they perform their identifying gesture over time. Six updating schemes have been assessed within a database of 22 users repeating their identifying gesture in 20 sessions over 4 months, concluding that the more often the template is updated the better and more stable performance the technique presents.
Resumo:
El proyecto, “Aplicaciones de filtrado adaptativo LMS para mejorar la respuesta de acelerómetros”, se realizó con el objetivo de eliminar señales no deseadas de la señal de información procedentes de los acelerómetros para aplicaciones automovilísticas, mediante los algoritmos de los filtros adaptativos LMS. Dicho proyecto, está comprendido en tres áreas para su realización y ejecución, los cuales fueron ejecutados desde el inicio hasta el último día de trabajo. En la primera área de aplicación, diseñamos filtros paso bajo, paso alto, paso banda y paso banda eliminada, en lo que son los filtros de butterworth, filtros Chebyshev, de tipo uno como de tipo dos y filtros elípticos. Con esta primera parte, lo que se quiere es conocer, o en nuestro caso, recordar el entorno de Matlab, en sus distintas ecuaciones prediseñadas que nos ofrece el mencionado entorno, como también nos permite conocer un poco las características de estos filtros. Para posteriormente probar dichos filtros en el DSP. En la segunda etapa, y tras recordar un poco el entorno de Matlab, nos centramos en la elaboración y/o diseño de nuestro filtro adaptativo LMS; experimentado primero con Matlab, para como ya se dijo, entender y comprender el comportamiento del mismo. Cuando ya teníamos claro esta parte, procedimos a “cargar” el código en el DSP, compilarlo y depurarlo, realizando estas últimas acciones gracias al Visual DSP. Resaltaremos que durante esta segunda etapa se empezó a excitar las entradas del sistema, con señales provenientes del Cool Edit Pro, y además para saber cómo se comportaba el filtro adaptativo LMS, se utilizó señales provenientes de un generador de funciones, para obtener de esta manera un desfase entre las dos señales de entrada; aunque también se utilizó el propio Cool Edit Pro para obtener señales desfasadas, pero debido que la fase tres no podíamos usar el mencionado software, realizamos pruebas con el generador de funciones. Finalmente, en la tercera etapa, y tras comprobar el funcionamiento deseado de nuestro filtro adaptativo DSP con señales de entrada simuladas, pasamos a un laboratorio, en donde se utilizó señales provenientes del acelerómetro 4000A, y por supuesto, del generador de funciones; el cual sirvió para la formación de nuestra señal de referencia, que permitirá la eliminación de una de las frecuencias que se emitirá del acelerómetro. Por último, cabe resaltar que pudimos obtener un comportamiento del filtro adaptativo LMS adecuado, y como se esperaba. Realizamos pruebas, con señales de entrada desfasadas, y obtuvimos curiosas respuestas a la salida del sistema, como son que la frecuencia a eliminar, mientras más desfasado estén estas señales, mas se notaba. Solucionando este punto al aumentar el orden del filtro. Finalmente podemos concluir que pese a que los filtros digitales probados en la primera etapa son útiles, para tener una respuesta lo más ideal posible hay que tener en cuenta el orden del filtro, el cual debe ser muy alto para que las frecuencias próximas a la frecuencia de corte, no se atenúen. En cambio, en los filtros adaptativos LMS, si queremos por ejemplo, eliminar una señal de entre tres señales, sólo basta con introducir la frecuencia a eliminar, por una de las entradas del filtro, en concreto la señal de referencia. De esta manera, podemos eliminar una señal de entre estas tres, de manera que las otras dos, no se vean afectadas por el procedimiento. Abstract The project, "LMS adaptive filtering applications to improve the response of accelerometers" was conducted in order to remove unwanted signals from the information signal from the accelerometers for automotive applications using algorithms LMS adaptive filters. The project is comprised of three areas for implementation and execution, which were executed from the beginning until the last day. In the first area of application, we design low pass filters, high pass, band pass and band-stop, as the filters are Butterworth, Chebyshev filters, type one and type two and elliptic filters. In this first part, what we want is to know, or in our case, remember the Matlab environment, art in its various equations offered by the mentioned environment, as well as allows us to understand some of the characteristics of these filters. To further test these filters in the DSP. In the second stage, and recalling some Matlab environment, we focus on the development and design of our LMS adaptive filter; experimented first with Matlab, for as noted above, understand the behavior of the same. When it was clear this part, proceeded to "load" the code in the DSP, compile and debug, making these latest actions by the Visual DSP. Will highlight that during this second stage began to excite the system inputs, with signals from the Cool Edit Pro, and also for how he behaved the LMS adaptive filter was used signals from a function generator, to thereby obtain a gap between the two input signals, but also used Cool Edit Pro himself for phase signals, but due to phase three could not use such software, we test the function generator. Finally, in the third stage, and after checking the desired performance of our DSP adaptive filter with simulated input signals, we went to a laboratory, where we used signals from the accelerometer 4000A, and of course, the function generator, which was used for the formation of our reference signal, enabling the elimination of one of the frequencies to be emitted from the accelerometer. Note that they were able to obtain a behavior of the LMS adaptive filter suitable as expected. We test with outdated input signals, and got curious response to the output of the system, such as the frequency to remove, the more outdated are these signs, but noticeable. Solving this point with increasing the filter order. We can conclude that although proven digital filters in the first stage are useful, to have a perfect answer as possible must be taken into account the order of the filter, which should be very high for frequencies near the frequency cutting, not weakened. In contrast, in the LMS adaptive filters if we for example, remove a signal from among three signals, only enough to eliminate the frequency input on one of the inputs of the filter, namely the reference signal. Thus, we can remove a signal between these three, so that the other two, not affected by the procedure.
Resumo:
En este proyecto se estudian y analizan las diferentes técnicas de procesado digital de señal aplicadas a acelerómetros. Se hace uso de una tarjeta de prototipado, basada en DSP, para realizar las diferentes pruebas. El proyecto se basa, principalmente, en realizar filtrado digital en señales provenientes de un acelerómetro en concreto, el 1201F, cuyo campo de aplicación es básicamente la automoción. Una vez estudiadas la teoría de procesado y las características de los filtros, diseñamos una aplicación basándonos sobre todo en el entorno en el que se desarrollaría una aplicación de este tipo. A lo largo del diseño, se explican las diferentes fases: diseño por ordenador (Matlab), diseño de los filtros en el DSP (C), pruebas sobre el DSP sin el acelerómetro, calibración del acelerómetro, pruebas finales sobre el acelerómetro... Las herramientas utilizadas son: la plataforma Kit de evaluación 21-161N de Analog Devices (equipado con el entorno de desarrollo Visual DSP 4.5++), el acelerómetro 1201F, el sistema de calibración de acelerómetros CS-18-LF de Spektra y los programas software MATLAB 7.5 y CoolEditPRO 2.0. Se realizan únicamente filtros IIR de 2º orden, de todos los tipos (Butterworth, Chebyshev I y II y Elípticos). Realizamos filtros de banda estrecha, paso-banda y banda eliminada, de varios tipos, dentro del fondo de escala que permite el acelerómetro. Una vez realizadas todas las pruebas, tanto simulaciones como físicas, se seleccionan los filtros que presentan un mejor funcionamiento y se analizan para obtener conclusiones. Como se dispone de un entorno adecuado para ello, se combinan los filtros entre sí de varias maneras, para obtener filtros de mayor orden (estructura paralelo). De esta forma, a partir de filtros paso-banda, podemos obtener otras configuraciones que nos darán mayor flexibilidad. El objetivo de este proyecto no se basa sólo en obtener buenos resultados en el filtrado, sino también de aprovechar las facilidades del entorno y las herramientas de las que disponemos para realizar el diseño más eficiente posible. In this project, we study and analize digital signal processing in order to design an accelerometer-based application. We use a hardware card of evaluation, based on DSP, to make different tests. This project is based in design digital filters for an automotion application. The accelerometer type is 1201F. First, we study digital processing theory and main parameters of real filters, to make a design based on the application environment. Along the application, we comment all the different steps: computer design (Matlab), filter design on the DSP (C language), simulation test on the DSP without the accelerometer, accelerometer calibration, final tests on the accelerometer... Hardware and software tools used are: Kit of Evaluation 21-161-N, based on DSP, of Analog Devices (equiped with software development tool Visual DSP 4.5++), 1201-F accelerometer, CS-18-LF calibration system of SPEKTRA and software tools MATLAB 7.5 and CoolEditPRO 2.0. We only perform 2nd orden IIR filters, all-type : Butterworth, Chebyshev I and II and Ellyptics. We perform bandpass and stopband filters, with very narrow band, taking advantage of the accelerometer's full scale. Once all the evidence, both simulations and physical, are finished, filters having better performance and analyzed and selected to draw conclusions. As there is a suitable environment for it, the filters are combined together in different ways to obtain higher order filters (parallel structure). Thus, from band-pass filters, we can obtain many configurations that will give us greater flexibility. The purpose of this project is not only based on good results in filtering, but also to exploit the facilities of the environment and the available tools to make the most efficient design possible.
Resumo:
El interés cada vez mayor por las redes de sensores inalámbricos pueden ser entendido simplemente pensando en lo que esencialmente son: un gran número de pequeños nodos sensores autoalimentados que recogen información o detectan eventos especiales y se comunican de manera inalámbrica, con el objetivo final de entregar sus datos procesados a una estación base. Los nodos sensores están densamente desplegados dentro del área de interés, se pueden desplegar al azar y tienen capacidad de cooperación. Por lo general, estos dispositivos son pequeños y de bajo costo, de modo que pueden ser producidos y desplegados en gran numero aunque sus recursos en términos de energía, memoria, velocidad de cálculo y ancho de banda están enormemente limitados. Detección, tratamiento y comunicación son tres elementos clave cuya combinación en un pequeño dispositivo permite lograr un gran número de aplicaciones. Las redes de sensores proporcionan oportunidades sin fin, pero al mismo tiempo plantean retos formidables, tales como lograr el máximo rendimiento de una energía que es escasa y por lo general un recurso no renovable. Sin embargo, los recientes avances en la integración a gran escala, integrado de hardware de computación, comunicaciones, y en general, la convergencia de la informática y las comunicaciones, están haciendo de esta tecnología emergente una realidad. Del mismo modo, los avances en la nanotecnología están empezando a hacer que todo gire entorno a las redes de pequeños sensores y actuadores distribuidos. Hay diferentes tipos de sensores tales como sensores de presión, acelerómetros, cámaras, sensores térmicos o un simple micrófono. Supervisan las condiciones presentes en diferentes lugares tales como la temperatura, humedad, el movimiento, la luminosidad, presión, composición del suelo, los niveles de ruido, la presencia o ausencia de ciertos tipos de objetos, los niveles de tensión mecánica sobre objetos adheridos y las características momentáneas tales como la velocidad , la dirección y el tamaño de un objeto, etc. Se comprobara el estado de las Redes Inalámbricas de Sensores y se revisaran los protocolos más famosos. Así mismo, se examinara la identificación por radiofrecuencia (RFID) ya que se está convirtiendo en algo actual y su presencia importante. La RFID tiene un papel crucial que desempeñar en el futuro en el mundo de los negocios y los individuos por igual. El impacto mundial que ha tenido la identificación sin cables está ejerciendo fuertes presiones en la tecnología RFID, los servicios de investigación y desarrollo, desarrollo de normas, el cumplimiento de la seguridad y la privacidad y muchos más. Su potencial económico se ha demostrado en algunos países mientras que otros están simplemente en etapas de planificación o en etapas piloto, pero aun tiene que afianzarse o desarrollarse a través de la modernización de los modelos de negocio y aplicaciones para poder tener un mayor impacto en la sociedad. Las posibles aplicaciones de redes de sensores son de interés para la mayoría de campos. La monitorización ambiental, la guerra, la educación infantil, la vigilancia, la micro-cirugía y la agricultura son solo unos pocos ejemplos de los muchísimos campos en los que tienen cabida las redes mencionadas anteriormente. Estados Unidos de América es probablemente el país que más ha investigado en esta área por lo que veremos muchas soluciones propuestas provenientes de ese país. Universidades como Berkeley, UCLA (Universidad de California, Los Ángeles) Harvard y empresas como Intel lideran dichas investigaciones. Pero no solo EE.UU. usa e investiga las redes de sensores inalámbricos. La Universidad de Southampton, por ejemplo, está desarrollando una tecnología para monitorear el comportamiento de los glaciares mediante redes de sensores que contribuyen a la investigación fundamental en glaciología y de las redes de sensores inalámbricos. Así mismo, Coalesenses GmbH (Alemania) y Zurich ETH están trabajando en diversas aplicaciones para redes de sensores inalámbricos en numerosas áreas. Una solución española será la elegida para ser examinada más a fondo por ser innovadora, adaptable y polivalente. Este estudio del sensor se ha centrado principalmente en aplicaciones de tráfico, pero no se puede olvidar la lista de más de 50 aplicaciones diferentes que ha sido publicada por la firma creadora de este sensor específico. En la actualidad hay muchas tecnologías de vigilancia de vehículos, incluidos los sensores de bucle, cámaras de video, sensores de imagen, sensores infrarrojos, radares de microondas, GPS, etc. El rendimiento es aceptable, pero no suficiente, debido a su limitada cobertura y caros costos de implementación y mantenimiento, especialmente este ultimo. Tienen defectos tales como: línea de visión, baja exactitud, dependen mucho del ambiente y del clima, no se puede realizar trabajos de mantenimiento sin interrumpir las mediciones, la noche puede condicionar muchos de ellos, tienen altos costos de instalación y mantenimiento, etc. Por consiguiente, en las aplicaciones reales de circulación, los datos recibidos son insuficientes o malos en términos de tiempo real debido al escaso número de detectores y su costo. Con el aumento de vehículos en las redes viales urbanas las tecnologías de detección de vehículos se enfrentan a nuevas exigencias. Las redes de sensores inalámbricos son actualmente una de las tecnologías más avanzadas y una revolución en la detección de información remota y en las aplicaciones de recogida. Las perspectivas de aplicación en el sistema inteligente de transporte son muy amplias. Con este fin se ha desarrollado un programa de localización de objetivos y recuento utilizando una red de sensores binarios. Esto permite que el sensor necesite mucha menos energía durante la transmisión de información y que los dispositivos sean más independientes con el fin de tener un mejor control de tráfico. La aplicación se centra en la eficacia de la colaboración de los sensores en el seguimiento más que en los protocolos de comunicación utilizados por los nodos sensores. Las operaciones de salida y retorno en las vacaciones son un buen ejemplo de por qué es necesario llevar la cuenta de los coches en las carreteras. Para ello se ha desarrollado una simulación en Matlab con el objetivo localizar objetivos y contarlos con una red de sensores binarios. Dicho programa se podría implementar en el sensor que Libelium, la empresa creadora del sensor que se examinara concienzudamente, ha desarrollado. Esto permitiría que el aparato necesitase mucha menos energía durante la transmisión de información y los dispositivos sean más independientes. Los prometedores resultados obtenidos indican que los sensores de proximidad binarios pueden formar la base de una arquitectura robusta para la vigilancia de áreas amplias y para el seguimiento de objetivos. Cuando el movimiento de dichos objetivos es suficientemente suave, no tiene cambios bruscos de trayectoria, el algoritmo ClusterTrack proporciona un rendimiento excelente en términos de identificación y seguimiento de trayectorias los objetos designados como blancos. Este algoritmo podría, por supuesto, ser utilizado para numerosas aplicaciones y se podría seguir esta línea de trabajo para futuras investigaciones. No es sorprendente que las redes de sensores de binarios de proximidad hayan atraído mucha atención últimamente ya que, a pesar de la información mínima de un sensor de proximidad binario proporciona, las redes de este tipo pueden realizar un seguimiento de todo tipo de objetivos con la precisión suficiente. Abstract The increasing interest in wireless sensor networks can be promptly understood simply by thinking about what they essentially are: a large number of small sensing self-powered nodes which gather information or detect special events and communicate in a wireless fashion, with the end goal of handing their processed data to a base station. The sensor nodes are densely deployed inside the phenomenon, they deploy random and have cooperative capabilities. Usually these devices are small and inexpensive, so that they can be produced and deployed in large numbers, and so their resources in terms of energy, memory, computational speed and bandwidth are severely constrained. Sensing, processing and communication are three key elements whose combination in one tiny device gives rise to a vast number of applications. Sensor networks provide endless opportunities, but at the same time pose formidable challenges, such as the fact that energy is a scarce and usually non-renewable resource. However, recent advances in low power Very Large Scale Integration, embedded computing, communication hardware, and in general, the convergence of computing and communications, are making this emerging technology a reality. Likewise, advances in nanotechnology and Micro Electro-Mechanical Systems are pushing toward networks of tiny distributed sensors and actuators. There are different sensors such as pressure, accelerometer, camera, thermal, and microphone. They monitor conditions at different locations, such as temperature, humidity, vehicular movement, lightning condition, pressure, soil makeup, noise levels, the presence or absence of certain kinds of objects, mechanical stress levels on attached objects, the current characteristics such as speed, direction and size of an object, etc. The state of Wireless Sensor Networks will be checked and the most famous protocols reviewed. As Radio Frequency Identification (RFID) is becoming extremely present and important nowadays, it will be examined as well. RFID has a crucial role to play in business and for individuals alike going forward. The impact of ‘wireless’ identification is exerting strong pressures in RFID technology and services research and development, standards development, security compliance and privacy, and many more. The economic value is proven in some countries while others are just on the verge of planning or in pilot stages, but the wider spread of usage has yet to take hold or unfold through the modernisation of business models and applications. Possible applications of sensor networks are of interest to the most diverse fields. Environmental monitoring, warfare, child education, surveillance, micro-surgery, and agriculture are only a few examples. Some real hardware applications in the United States of America will be checked as it is probably the country that has investigated most in this area. Universities like Berkeley, UCLA (University of California, Los Angeles) Harvard and enterprises such as Intel are leading those investigations. But not just USA has been using and investigating wireless sensor networks. University of Southampton e.g. is to develop technology to monitor glacier behaviour using sensor networks contributing to fundamental research in glaciology and wireless sensor networks. Coalesenses GmbH (Germany) and ETH Zurich are working in applying wireless sensor networks in many different areas too. A Spanish solution will be the one examined more thoroughly for being innovative, adaptable and multipurpose. This study of the sensor has been focused mainly to traffic applications but it cannot be forgotten the more than 50 different application compilation that has been published by this specific sensor’s firm. Currently there are many vehicle surveillance technologies including loop sensors, video cameras, image sensors, infrared sensors, microwave radar, GPS, etc. The performance is acceptable but not sufficient because of their limited coverage and expensive costs of implementation and maintenance, specially the last one. They have defects such as: line-ofsight, low exactness, depending on environment and weather, cannot perform no-stop work whether daytime or night, high costs for installation and maintenance, etc. Consequently, in actual traffic applications the received data is insufficient or bad in terms of real-time owed to detector quantity and cost. With the increase of vehicle in urban road networks, the vehicle detection technologies are confronted with new requirements. Wireless sensor network is the state of the art technology and a revolution in remote information sensing and collection applications. It has broad prospect of application in intelligent transportation system. An application for target tracking and counting using a network of binary sensors has been developed. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices in order to have a better traffic control. The application is focused on the efficacy of collaborative tracking rather than on the communication protocols used by the sensor nodes. Holiday crowds are a good case in which it is necessary to keep count of the cars on the roads. To this end a Matlab simulation has been produced for target tracking and counting using a network of binary sensors that e.g. could be implemented in Libelium’s solution. Libelium is the enterprise that has developed the sensor that will be deeply examined. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices. The promising results obtained indicate that binary proximity sensors can form the basis for a robust architecture for wide area surveillance and tracking. When the target paths are smooth enough ClusterTrack particle filter algorithm gives excellent performance in terms of identifying and tracking different target trajectories. This algorithm could, of course, be used for different applications and that could be done in future researches. It is not surprising that binary proximity sensor networks have attracted a lot of attention lately. Despite the minimal information a binary proximity sensor provides, networks of these sensing modalities can track all kinds of different targets classes accurate enough.
Resumo:
Los sensores inerciales (acelerómetros y giróscopos) se han ido introduciendo poco a poco en dispositivos que usamos en nuestra vida diaria gracias a su minituarización. Hoy en día todos los smartphones contienen como mínimo un acelerómetro y un magnetómetro, siendo complementados en losmás modernos por giróscopos y barómetros. Esto, unido a la proliferación de los smartphones ha hecho viable el diseño de sistemas basados en las medidas de sensores que el usuario lleva colocados en alguna parte del cuerpo (que en un futuro estarán contenidos en tejidos inteligentes) o los integrados en su móvil. El papel de estos sensores se ha convertido en fundamental para el desarrollo de aplicaciones contextuales y de inteligencia ambiental. Algunos ejemplos son el control de los ejercicios de rehabilitación o la oferta de información referente al sitio turístico que se está visitando. El trabajo de esta tesis contribuye a explorar las posibilidades que ofrecen los sensores inerciales para el apoyo a la detección de actividad y la mejora de la precisión de servicios de localización para peatones. En lo referente al reconocimiento de la actividad que desarrolla un usuario, se ha explorado el uso de los sensores integrados en los dispositivos móviles de última generación (luz y proximidad, acelerómetro, giróscopo y magnetómetro). Las actividades objetivo son conocidas como ‘atómicas’ (andar a distintas velocidades, estar de pie, correr, estar sentado), esto es, actividades que constituyen unidades de actividades más complejas como pueden ser lavar los platos o ir al trabajo. De este modo, se usan algoritmos de clasificación sencillos que puedan ser integrados en un móvil como el Naïve Bayes, Tablas y Árboles de Decisión. Además, se pretende igualmente detectar la posición en la que el usuario lleva el móvil, no sólo con el objetivo de utilizar esa información para elegir un clasificador entrenado sólo con datos recogidos en la posición correspondiente (estrategia que mejora los resultados de estimación de la actividad), sino también para la generación de un evento que puede producir la ejecución de una acción. Finalmente, el trabajo incluye un análisis de las prestaciones de la clasificación variando el tipo de parámetros y el número de sensores usados y teniendo en cuenta no sólo la precisión de la clasificación sino también la carga computacional. Por otra parte, se ha propuesto un algoritmo basado en la cuenta de pasos utilizando informaiii ción proveniente de un acelerómetro colocado en el pie del usuario. El objetivo final es detectar la actividad que el usuario está haciendo junto con la estimación aproximada de la distancia recorrida. El algoritmo de cuenta pasos se basa en la detección de máximos y mínimos usando ventanas temporales y umbrales sin requerir información específica del usuario. El ámbito de seguimiento de peatones en interiores es interesante por la falta de un estándar de localización en este tipo de entornos. Se ha diseñado un filtro extendido de Kalman centralizado y ligeramente acoplado para fusionar la información medida por un acelerómetro colocado en el pie del usuario con medidas de posición. Se han aplicado también diferentes técnicas de corrección de errores como las de velocidad cero que se basan en la detección de los instantes en los que el pie está apoyado en el suelo. Los resultados han sido obtenidos en entornos interiores usando las posiciones estimadas por un sistema de triangulación basado en la medida de la potencia recibida (RSS) y GPS en exteriores. Finalmente, se han implementado algunas aplicaciones que prueban la utilidad del trabajo desarrollado. En primer lugar se ha considerado una aplicación de monitorización de actividad que proporciona al usuario información sobre el nivel de actividad que realiza durante un período de tiempo. El objetivo final es favorecer el cambio de comportamientos sedentarios, consiguiendo hábitos saludables. Se han desarrollado dos versiones de esta aplicación. En el primer caso se ha integrado el algoritmo de cuenta pasos en una plataforma OSGi móvil adquiriendo los datos de un acelerómetro Bluetooth colocado en el pie. En el segundo caso se ha creado la misma aplicación utilizando las implementaciones de los clasificadores en un dispositivo Android. Por otro lado, se ha planteado el diseño de una aplicación para la creación automática de un diario de viaje a partir de la detección de eventos importantes. Esta aplicación toma como entrada la información procedente de la estimación de actividad y de localización además de información almacenada en bases de datos abiertas (fotos, información sobre sitios) e información sobre sensores reales y virtuales (agenda, cámara, etc.) del móvil. Abstract Inertial sensors (accelerometers and gyroscopes) have been gradually embedded in the devices that people use in their daily lives thanks to their miniaturization. Nowadays all smartphones have at least one embedded magnetometer and accelerometer, containing the most upto- date ones gyroscopes and barometers. This issue, together with the fact that the penetration of smartphones is growing steadily, has made possible the design of systems that rely on the information gathered by wearable sensors (in the future contained in smart textiles) or inertial sensors embedded in a smartphone. The role of these sensors has become key to the development of context-aware and ambient intelligent applications. Some examples are the performance of rehabilitation exercises, the provision of information related to the place that the user is visiting or the interaction with objects by gesture recognition. The work of this thesis contributes to explore to which extent this kind of sensors can be useful to support activity recognition and pedestrian tracking, which have been proven to be essential for these applications. Regarding the recognition of the activity that a user performs, the use of sensors embedded in a smartphone (proximity and light sensors, gyroscopes, magnetometers and accelerometers) has been explored. The activities that are detected belong to the group of the ones known as ‘atomic’ activities (e.g. walking at different paces, running, standing), that is, activities or movements that are part of more complex activities such as doing the dishes or commuting. Simple, wellknown classifiers that can run embedded in a smartphone have been tested, such as Naïve Bayes, Decision Tables and Trees. In addition to this, another aim is to estimate the on-body position in which the user is carrying the mobile phone. The objective is not only to choose a classifier that has been trained with the corresponding data in order to enhance the classification but also to start actions. Finally, the performance of the different classifiers is analysed, taking into consideration different features and number of sensors. The computational and memory load of the classifiers is also measured. On the other hand, an algorithm based on step counting has been proposed. The acceleration information is provided by an accelerometer placed on the foot. The aim is to detect the activity that the user is performing together with the estimation of the distance covered. The step counting strategy is based on detecting minima and its corresponding maxima. Although the counting strategy is not innovative (it includes time windows and amplitude thresholds to prevent under or overestimation) no user-specific information is required. The field of pedestrian tracking is crucial due to the lack of a localization standard for this kind of environments. A loosely-coupled centralized Extended Kalman Filter has been proposed to perform the fusion of inertial and position measurements. Zero velocity updates have been applied whenever the foot is detected to be placed on the ground. The results have been obtained in indoor environments using a triangulation algorithm based on RSS measurements and GPS outdoors. Finally, some applications have been designed to test the usefulness of the work. The first one is called the ‘Activity Monitor’ whose aim is to prevent sedentary behaviours and to modify habits to achieve desired objectives of activity level. Two different versions of the application have been implemented. The first one uses the activity estimation based on the step counting algorithm, which has been integrated in an OSGi mobile framework acquiring the data from a Bluetooth accelerometer placed on the foot of the individual. The second one uses activity classifiers embedded in an Android smartphone. On the other hand, the design of a ‘Travel Logbook’ has been planned. The input of this application is the information provided by the activity and localization modules, external databases (e.g. pictures, points of interest, weather) and mobile embedded and virtual sensors (agenda, camera, etc.). The aim is to detect important events in the journey and gather the information necessary to store it as a journal page.
Resumo:
This article proposes an innovative biometric technique based on the idea of authenticating a person on a mobile device by gesture recognition. To accomplish this aim, a user is prompted to be recognized by a gesture he/she performs moving his/her hand while holding a mobile device with an accelerometer embedded. As users are not able to repeat a gesture exactly in the air, an algorithm based on sequence alignment is developed to correct slight differences between repetitions of the same gesture. The robustness of this biometric technique has been studied within 2 different tests analyzing a database of 100 users with real falsifications. Equal Error Rates of 2.01 and 4.82% have been obtained in a zero-effort and an active impostor attack, respectively. A permanence evaluation is also presented from the analysis of the repetition of the gestures of 25 users in 10 sessions over a month. Furthermore, two different gesture databases have been developed: one made up of 100 genuine identifying 3-D hand gestures and 3 impostors trying to falsify each of them and another with 25 volunteers repeating their identifying 3- D hand gesture in 10 sessions over a month. These databases are the most extensive in published studies, to the best of our knowledge.
Resumo:
The availability of inertial sensors embedded in mobile devices has enabled a new type of interaction based on the movements or “gestures” made by the users when holding the device. In this paper we propose a gesture recognition system for mobile devices based on accelerometer and gyroscope measurements. The system is capable of recognizing a set of predefined gestures in a user-independent way, without the need of a training phase. Furthermore, it was designed to be executed in real-time in resource-constrained devices, and therefore has a low computational complexity. The performance of the system is evaluated offline using a dataset of gestures, and also online, through some user tests with the system running in a smart phone.
Resumo:
El presente proyecto desarrolla una aplicación residente en un terminal móvil, que pretende proporcionar un valor añadido al actual proyecto Localiza, sistema de localización bajo demanda para personas con discapacidad severa. Mediante el desarrollo de este proyecto se pretende facilitar el acceso al teléfono móvil y al ordenador a las personas con discapacidad motriz. El objetivo final es ser capaz de controlar un teléfono móvil por medio de control remoto, mediante el uso de un ordenador personal. Para ello se establece una conexión remota entre el terminal móvil y el ordenador personal, a través del protocolo de comunicación Bluetooth. De este modo, a través de la aplicación móvil se transmite la información de posición de las coordenadas, proporcionada por el acelerómetro del terminal, a un servicio instalado en el ordenador que se encarga de gestionar la información recibida, y así crear las interrupciones pertinentes en el sistema operativo para mover el puntero del ratón. Para controlar el teléfono móvil de forma remota se dispondrá de un emulador de telefonía móvil instalado en el ordenador que implemente las funciones básicas de control de llamadas. Por medio de comunicación Bluetooth, las acciones que realice el usuario en emulador serán invocadas en el propio terminal móvil. SUMMARY. The project presented develops a mobile application, which is intended to provide an added value to the already existing project Localiza, on-demand position system for people with severe disabilities. This project aims to facilitate the access to the personal computer and to the mobile telephony environment for disabled people. The main goal is to be able to control a mobile phone by remote control, using a personal computer. Thus, a remote connexion will to be established between the mobile device and the personal computer, through Bluetooth communication protocol. Thus, the mobile application will transmit the coordinate’s position, provided by the accelerometer of the mobile device, to a Bluetooth service running in the personal computer. That service will be in charge of managing the information received in order to create the interruptions on the operational system for moving the mouse pointer. The remote controlling of the mobile device is carried out using a mobile telephony emulator installed in the personal computer, which will implement the basic functionality of calling control. Using Bluetooth communication, the user actions done in the emulator interface will be invoked on the mobile device itself.
Resumo:
The application of the response of fruits to low energy for mechanical impacts is described, for evaluation of post-harvest ripening of avocadoes of the variety "Hass". An impactor of 50g of weight, provided with an accelerometer, and free-falling from a height of 4 cm, is used; it is interfaced to a computer and uses a special software for retrieving and analyzing the deceleration data. Impact response parameters of individual fruits were compared to firmness of the pulp, measured by the most used method of double-plate puncture, as well as to other physical and physiological parameters: color, skin puncture ethylene production rate and others. Two groups of fruits were carefully selected, stored at 6º C (60 days) and ripened at 20ºC (11 days), and tested during the storage period. It is shown that, as in other types of fruits, impact response can be a good predictor of firmness in avocadoes, obtaining the same accuracy as with destructive firmness measurements. Mathematical and multiple regression models are calculated and compared to measured data, with which a prediction of storage period can be made for these fruits.
Resumo:
Results of previous studies conducted by different researchers have shown that impact techniques can be used to evaluate firmness (Delwiche et al., 1989; Delwiche et al.;1996; Jaren et al., 1992; Ruiz Altisent et al., 1996). To impact the fruit with a small spherical impactor of known mass and radius of curvature and measure the acceleration of the impactor is a technique described by Chen et al. (1985) and used by several researchers for sensing fruit firmness (Jaren et al., 1992; Correa et al.; 1992). The advantages of this method vs. a force sensor that measures the force as a function of time is that the measured impact-acceleration response is independent of the fruit mass and is less sensitive to the variation in the radius of curvature of the fruit (Chen et al., 1996). Ruiz Altisent et al. (1993) developed and used a 50 g impactor with a 19 mm diameter spherical tip, dropping from different height for fruits (apples, pears, avocados, melons, peaches ...). Another impact device for firmness sensing of fruits was developed by Chen and Ruiz Altisent (1996). They designed and fabricated an experimental low-mass impact sensor for high-speed sensing of fruit firmness. The impactor consisted of a semi-spherical impacting tip attached to the end (near the centre of percussion) of a pivoting arm. Impact is done by swinging the impactor to collide with the fruit. It has been implemented for on-line use. In both devices a small accelerometer is mounted behind the impacting tip. Lateral impactor and vertical impactor have been used in laboratory and the results from non-destructive impact tests have contributed to standardise methods to measure fruit firmness: Barreiro (1992) compared impact parameters and results of Magness-Taylor penetration tests for apples, pears, apricots [and peaches; Agulheiro (1994) studied the behaviour of the impact parameters during seven weeks of cold storage of two melon varieties; Ortiz (1998) used low energy impact and NIR procedures to segregate non crispy, non firm and soft peaches. Steinmetz (1996) compared various non-destructive firmness sensors, based on sound, impact and micro-deformation.
Resumo:
Impact techniques can be used to evaluate firmness on fruit. Chen and Ruiz-Altisent developed and used a 50,4 g impactor with a 19 mm diameter spherical tip, dropping from different heights onto the fruit. Another impactor device is a semispherical impacting tip attached to the end of a pivoting arm. In both devices a small accelerometer is mounted behind the impacting tip. Prototype lateral impactor on-line sorting system for high-speed firmness sorting of fruits has been developed and tested. Preliminary results shows that is possible its use on-line. The last version of an impact device has new elements that improve the data resolution, the signal-noise ratio and the precision.
Resumo:
A non destructive impact sensor to measure fruit firmness has been installed on the sizer chain of an experimental fruit packing line. The sensor measures the fruit firmness related to the acceleration-time curve supplied by an accelerometer attached to an impacting arm. The sensor works correctly at a speed of 5 to 7 fruits per second. Ratio A/t (maximum acceleration value divided by its corresponding time), mean, and maximum slopes of the curves supplied by the accelerometer, were well correlated with the firmness data obtained in laboratory with the load-unload test. The accelerometer signal allows the classification of the fruit in three levels of firmness, by means of a specific software.
Resumo:
Due to the intensive use of mobile phones for diferent purposes, these devices usually contain condential information which must not be accessed by another person apart from the owner of the device. Furthermore, the new generation phones commonly incorporate an accelerometer which may be used to capture the acceleration signals produced as a result of owner s gait. Nowadays, gait identication in basis of acceleration signals is being considered as a new biometric technique which allows blocking the device when another person is carrying it. Although distance based approaches as Euclidean distance or dynamic time warping have been applied to solve this identication problem, they show di±culties when dealing with gaits at diferent speeds. For this reason, in this paper, a method to extract an average template from instances of the gait at diferent velocities is presented. This method has been tested with the gait signals of 34 subjects while walking at diferent motion speeds (slow, normal and fast) and it has shown to improve the performance of Euclidean distance and classical dynamic time warping.