9 resultados para Abscisic acid
em Universidad Politécnica de Madrid
Resumo:
Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi.
Resumo:
Seed dormancy prevents seeds from germinating under environmental conditions unfavourable for plant growth and development and constitutes an evolutionary advantage. Dry storage, also known as after-ripening, gradually decreases seed dormancy by mechanisms not well understood. An Arabidopsis thaliana DOF transcription factor gene (DOF6) affecting seed germination has been characterized. The transcript levels of this gene accumulate in dry seeds and decay gradually during after-ripening and also upon seed imbibition. While constitutive over-expression of DOF6 produced aberrant growth and sterility in the plant, its over-expression induced upon seed imbibition triggered delayed germination, abscisic acid (ABA)-hypersensitive phenotypes and increased expression of the ABA biosynthetic gene ABA1 and ABA-related stress genes. Wild-type germination and gene expression were gradually restored during seed after-ripening, despite of DOF6-induced over-expression. DOF6 was found to interact in a yeast two-hybrid system andin planta with TCP14, a previously described positive regulator of seed germination. The expression of ABA1 and ABA-related stress genes was also enhanced in tcp14 knock-out mutants. Taken together, these results indicate that DOF6 negatively affects seed germination and opposes TCP14 function in the regulation of a specific set of ABA-related genes
Resumo:
The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the G subunit displays enhanced susceptibility to these pathogens. G/AGB1 forms an obligate dimer with either one of the Arabidopsis G subunits (1/AGG1 and 2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the G and G1/2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.
Resumo:
La resistencia de las plantas a los hongos necrtrofos como Plectosphaerella cucumerina es genticamente compleja y depende de la activacin coordinada de distintas rutas de sealizacin (Llorente et al, 2005; Sanchez-Vallet et al, 2010). Entre stas se encuentran las mediadas por la protena G heterotrimrica, un complejo formado por tres subunidades (G, G y G) que regula tanto la respuesta de inmunidad a diferentes patgenos como distintos procesos de desarrollo (Temple and Jones, 2007). En esta Tesis hemos demostrado que, en Arabidopsis, el monmero funcional formado por las subunidades G y G1/G2 es el responsable de la regulacin de la respuesta de defensa, ya que mutantes nulos en estas subunidades (agb1 y agg1 agg2) presentan una alta susceptibilidad al hongo P. cucumerina. Adems, hemos identificado varios aminocidos (Q102, T188 y R235) de la protena AGB1 esenciales en la interaccin con los efectores correspondientes para la regulacin de la respuesta inmune (Jiang et al, enviado). Para determinar las bases moleculares de la resistencia mediada por la protena G heterotrimrica, llevamos a cabo un anlisis transcriptmico comparativo entre los genotipos agb1 y Col-0, el cual revel que la resistencia mediada por AGB1 no depende de rutas defensivas implicadas en la resistencia a hongos necrotrofos, como las mediadas por el cido saliclico (SA), etileno (ET), jasmnico (JA) o cido abscsico (ABA), o la ruta de biosntesis de metabolitos derivados del triptfano. Este estudio mostr que un nmero significativo de los genes desregulados en respuesta a P. cucumerina en el genotipo agb1 respecto a las plantas silvestres codificaban protenas con funciones relacionadas con la pared celular. La evaluacin de la composicin y estructura de la pared de los mutantes de las subunidades de la protena G heterotrimrica revel que los genotipos agb1 y agg1 agg2 presentaban alteraciones similares diferentes de las observadas en plantas silvestres Col-0, como una reduccin significativa en el contenido de xilosa en la pared. Estos datos sugieren que la protena G heterotrimrica puede modular la composicin/estructura de la pared celular y contribuir, de esta manera, en la regulacin de la respuesta inmune (Delgado- Cerezo et al, 2011). La caracterizacin del interactoma de la protena G heterotrimrica corrobor la relevancia funcional que presenta en la regulacin de la pared celular, ya que un nmero significativo de las interacciones identificadas estaban comprendidas por protenas relacionadas directa o indirectamente con la biognesis y remodelacin de la pared celular (Klopffleisch et al, 2011). El papel en inmunidad de algunos de estos potenciales efectores ha sido validado mediante el anlisis de la resistencia a P. cucumerina de los mutantes de prdida de funcin correspondientes. Con el objetivo de caracterizar las rutas de sealizacin mediadas por AGB1 e identificar efectores implicados en esta sealizacin, llevamos a cabo una bsqueda de mutantes supresores de la susceptibilidad de agb1 a P. cucumerina, identificndose varios mutantes sgb (supressor of Gbeta). En esta Tesis hemos caracterizado en detalle el mutante sgb10, que presenta una activacin constitutiva de las rutas de sealizacin mediadas por SA y JA+ET y suprime el fenotipo de susceptibilidad de agb1. SGB10 y AGB1 forman parte de rutas independientes en la regulacin de la respuesta inmune, mientras que interaccionan de forma compleja en el control de determinados procesos de desarrollo. La mutacin sgb10 ha sido cartografiada entre los genes At3g55010 y At3g56408, que incluye una regin con 160 genes. ABSTRACT Plant resistance to necrotrophic fungi Plectosphaerella cucumerina is genetically complex and depends on the interplay of different signalling pathways (Llorente et al, 2005; Sanchez-Vallet et al, 2010). Among others, the heterotrimeric G protein complex has a relevant role. The G protein that is formed by three subunits (G, G and G) is a pleiotropic regulator of immune responses to different types of pathogens and developmental issues (Temple and Jones, 2007). Throughout the Thesis, we have demonstrated that Arabidopsis functional monomer formed by the G and G1/G2 subunits is a key regulator of defense response, as null mutants (agb1 and agg1 agg2) are equally hypersusceptible to P. cucumerina infection. In addition we have identified several AGB1 aminoacids (Q102, T188 y R235) essentials to interact with specific effectors during the regulation of immune response (Jiang et al, sent).To determine the molecular basis of heterotrimeric G protein mediated resistance we have performed a microarray analysis with agb1-1 and wild type Col-0 plants before and after P. cucumerina challenge. A deep and exhaustive comparative transcriptomical analysis of these plants revealed that AGB1 mediated resistance does not rely on salicilic acid (SA), ethylene (ET), jasmonates (JA), abscisic acid (ABA) or triptophan derived metabolites biosynthesis. However the analysis revealed that a significant number of cell wall related genes are misregulated in the agb1 mutant after pathogen challenge when compared to wild-type plants. The analysis of cell wall composition and structure showed similar cell wall alterations between agb1 and agg1 agg2 mutants that are different from those of wild-type plants, so far the mutants present a significant reduction in xylose levels. All these results suggest that heterotrimeric G protein may regulate immune response through modifications in the cell wall composition/structure (Delgado-Cerezo et al, 2011). The characterization of Heterotrimeric G protein interactome revealed highly connected interactions between the G-protein core and proteins involved in cell wall composition or structure (Klopffleisch et al, 2011). To test the role in immunity of several effectors identified above, we have performed resistance analysis of corresponding null mutants against P. cucumerina. In order to characterize AGB1 mediated signalling pathway and identify additional effectors involved in AGB1-mediated immune response against P. cucumerina, we have performed a screening to isolate mutants with suppression of agb1 phenotype. One of the mutants, named sgb10, has been characterized during the Thesis. The mutant shows constitutive expression of SA, JA+ET-mediated defense signaling pathways to suppres agb1 hypersusceptibility. SGB10 and AGB1 proteins seem to be part of independent pathways in immunity, however its function during development remains unclear. At present, we have mapped the sgb10 mutation between At3g55010 and At3g56408 genes. This region contains 160 genes.
Resumo:
Un porcentaje importante de las prdidas de la produccin agrcola se deben a las enfermedades que causan en los cultivos los hongos necrtrofos y vasculares. Para mejorar la productividad agrcola es necesario tener un conocimiento detallado de las bases genticas y moleculares que regulan la resistencia de las plantas a este tipo de patgenos. En Arabidopsis thaliana la resistencia frente a patgenos necrtrofos, como el hongo Plectosphaerella cucumerina BMM (PcBMM), es genticamente compleja y depende de la activacin coordinada de distintas rutas de sealizacin, como las reguladas por las hormonas cido saliclico (SA), cido jasmnico (JA), etileno (ET) y cido abscsico (ABA), as como de la sntesis de compuestos antimicrobianos derivados del Triptfano y de la integridad de la pared celular (Llorente et al., 2005, Hernndez-Blanco et al., 2007; Delgado-Cerezo et al., 2012). Uno de los componentes claves en la regulacin de la resistencia de las plantas a patgenos (incluidos hongos necrtrofos y bitrofos) es la protena G heterotrimrica, un complejo proteico formado por tres subunidades (G, G y G), que tambin regula distintos procesos del desarrollo vegetal. En Arabidopsis hay un gen que codifica para la subunidad (GPA1), otro para la (AGB1), y tres genes para la subunidad (AGG1, AGG2 y AGG3). El complejo GPA1-AGB1-AGG (1-3) se activa y disocia tras la percepcin de una seal especfica, actuando el dmero AGB1-AGG1/2 como un monmero funcional que regula las respuestas de defensa (Delgado-Cerezo et al., 2012). Estudios transcriptmicos y anlisis bioqumicos de la pared celular en los que se comparaban los mutantes agb1-2 y agg1 agg2, y plantas silvestres (Col-0) revelaron que la resistencia mediada por G-G1/2 no es dependiente de rutas de defensa previamente caracterizadas, y sugieren que la protena G podra modular la composicin/estructura (integridad) de la pared celular (Delgado-Cerezo et al., 2012). Recientemente, se ha demostrado que AGB1 es un componente fundamental de la respuesta inmune mediada por Pathogen- Associated Molecular Patterns (PTI), ya que los mutantes agb1-2 son incapaces de activar tras el tratamiento con PAMPs respuestas de inmunidad, como la produccin de especies reactivas de oxgeno (ROS; Liu et al., 2013). Dada la importancia de la protena G heterotrimrica en la regulacin de la respuestas de defensa (incluida la PTI) realizamos un escrutinio de mutantes supresores de la susceptibilidad de agb1-2 al hongo necrtrofo, PcBMM, para identificar componentes adicionales de las rutas de sealizacin reguladas por AGB1. En este escrutinio se aislaron cuatro mutantes sgb (suppressors of agb1-2 susceptibility to pathogens), dos de los cuales, sgb10 y sgb11, se han caracterizado en la presente Tesis Doctoral. El mutante sgb10 es un segundo alelo nulo del gen MKP1 (At3g55270) que codifica la MAP quinasa-fosfatasa 1 (Bartels et al., 2009). Este mutante presenta lesiones espontneas en plantas adultas y una activacin constitutiva de las principales rutas de defensa (SA, JA y ET, y de metabolitos secundarios, como la camalexina), que explicara su elevada resistencia a PcBMM y Pseudomonas syringae. Estudios epistticos sugieren que la resistencia mediada por SGB10 no es dependiente, si no complementaria a la regulada por AGB1. El mutante sgb10 es capaz de restablecer en agb1-2 la produccin de ROS y otras respuestas PTI (fosforilacin de las MAPK6/3/4/11) tras el tratamiento con PAMPs tan diversos como flg22, elf18 y quitina, lo que demuestra el papel relevante de SGB10/MKP1 y de AGB1 en PTI. El mutante sgb11 se caracteriza por presentar un fenotipo similar a los mutantes irregular xylem (e.g. irx1) afectado en pared celular secundaria: irregularidades en las clulas xilemticas, reduccin en el tamao de la roseta y altura de planta, y hojas con un mayor contenido de clorofila. La resistencia de sgb11 a PcBMM es independiente de agb1-2, ya que la susceptibilidad del doble mutante sgb11 agb1-2 es intermedia entre la de agb1-2 y sgb11. El mutante sgb11 no revierte la deficiente PTI de agb1-2 tras el tratamiento con flg22, lo que indica que est alterado en una ruta distinta de la regulada por SGB10. sgb11 presenta una sobreactivacin de la ruta del cido abscsico (ABA), lo que podra explicar su resistencia a PcBMM. La mutacin sgb11 ha sido cartografiada en el cromosoma III de Arabidopsis entre los marcadores AthFUS6 (81,64cM) y nga6 (86,41cM) en un intervalo de aproximadamente 200 kb, que comprende genes, entre los que no se encuentra ninguno previamente descrito como IRX. El aislamiento y caracterizacin de SGB11 apoya la relevancia de la protena G heterotrimrica en la regulacin de la interconexin entre integridad de la pared celular e inmunidad. ABSTRACT A significant percentage of agricultural losses are due to diseases caused by necrotrophic and vascular fungi. To enhance crop yields is necessary to have a detailed knowledge of the genetic and molecular bases regulating plant resistance to these pathogens. Arabidopsis thaliana resistance to necrotrophic pathogens, such as Plectosphaerella cucumerina BMM (PcBMM) fungus, is genetically complex and depends on the coordinated activation of various signaling pathways. These include those regulated by salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) hormones and the synthesis of tryptophan-derived antimicrobial compounds and cell wall integrity (Llorente et al., 2005, Hernndez-Blanco et al., 2007; Delgado-Cerezo et al., 2012). One key component in the regulation of plant resistance to pathogens (including biotrophic and necrotrophic fungi) is the heterotrimeric G-protein. This protein complex is formed by three subunits (G, G and G), which also regulates various plant developmental processes. In Arabidopsis only one gene encodes for subunits (GPA1) and (AGB1), and three genes for subunit (AGG1, AGG2 y AGG3). The complex GPA1- AGB1-AGG(1-3) is activated and dissociates after perception of an specific signal, AGB1- AGG1/2 acts as a functional monomer regulating defense responses (Delgado-Cerezo et al., 2012). Comparative transcriptomic studies and biochemical analyses of the cell wall of agb1-2 and agg1agg2 mutant and wild plants (Col-0), showed that G-G1/2-mediated resistance is not dependent on previously characterized defense pathways. In addition, it suggests that G protein may modulate the composition/structure (integrity) of the plant cell wall (Delgado-Cerezo et al., 2012). Recently, it has been shown that AGB1 is a critical component of the immune response mediated by Pathogen-Associated Molecular Patterns (PTI), as agb1-2 mutants are unable to activate immune responses such as oxygen reactive species (ROS) production after PAMPs treatment (Liu et al., 2013). Considering the importance of the heterotrimeric G protein in regulation of defense responses (including PTI), we performed a screening for suppressors of agb1-2 susceptibility to the necrotrophic fungus PcBMM. This would allow the identification of additional components of the signaling pathways regulated by AGB1. In this search four sgb mutants (suppressors of agb1-2 susceptibility to pathogens) were isolated, two of which, sgb10 and sgb11, have been characterized in this PhD thesis. sgb10 mutant is a second null allele of MKP1 gene (At3g55270), which encodes the MAP kinase-phosphatase 1 (Bartels et al., 2009). This mutant exhibits spontaneous lesions in adult plants and a constitutive activation of the main defense pathways (SA, JA and ET, and secondary metabolites, such as camalexin), which explains its high resistance to Pseudomonas syringae and PcBMM. Epistatic studies suggest that SGB10- mediated resistance is not dependent, but complementary to the regulated by AGB1. The sgb10 mutant is able to restore agb1-2 ROS production and other PTI responses (MAPK6/3/4/11 phosphorylation) upon treatment with PAMPs as diverse as, flg22, elf18 and chitin, demonstrating the relevant role of SGB10/MKP1 and AGB1 in PTI. sgb11 mutant is characterized by showing a similar phenotype to irregular xylem mutants (e.g. irx1), affected in secondary cell wall: irregular xylems cells, rosette size reduction and plant height, and higher chlorophyll content on leaves. The resistance of sgb11 to PcBMM is independent of agb1-2, as susceptibility of the double mutant agb1-2sgb11 is intermediate between agb1-2 and sgb11. The sgb11 mutant does not revert the deficient PTI response in agb1-2 after flg22 treatment, indicating that is altered in a pathway different to the one regulated by SGB10. sgb11 presents an over-activation of the abscisic acid pathway (ABA), which could explain its resistance to PcBMM. The sgb11 mutation has been mapped on chromosome III of Arabidopsis, between AthFUS6 (81.64 cM) and nga6 (86.41 cM) markers, in 200 kb interval, which does not include previously known IRX genes. The isolation and characterization of SGB11 supports the importance of heterotrimeric G protein in the regulation of the interconnection between the cell wall integrity and immunity.
Resumo:
Los virus de plantas pueden causar enfermedades severas que conllevan serias prdidas econmicas a nivel mundial. Adems, en la naturaleza son comunes las infecciones simultneas con distintos virus que conducen a la exacerbacin de los sntomas de enfermedad, fenmeno al que se conoce como sinergismo viral. Una de las sintomatologas ms severas causadas por los virus en plantas susceptibles es la necrosis sistmica (NS), que incluso puede conducir a la muerte del husped. Este fenotipo ha sido comparado en ocasiones con la respuesta de resistencia de tipo HR, permitiendo establecer una serie de paralelismos entre ambos tipos de respuesta que sugieren que la NS producida en interacciones compatibles sera el resultado de una respuesta hipersensible sistmica (SHR). Sin embargo, los mecanismos moleculares implicados en el desarrollo de la NS, su relacin con procesos de defensa antiviral o su relevancia biolgica an no son bien entendidos, al igual que tampoco han sido estudiados los cambios producidos en la planta a escala genmica en infecciones mltiples que muestran sinergismo en patologa. En esta tesis doctoral se han empleado distintas aproximaciones de anlisis de expresin gnica, junto con otras tcnicas genticas y bioqumicas, en el sistema modelo de Nicotiana benthamiana para estudiar la NS producida por la infeccin sinrgica entre el Virus X de la patata (PVX) y diversos potyvirus. Se han comparado los cambios producidos en el husped a nivel genmico y fisiolgico entre la infeccin doble con PVX y el Virus Y de la patata (PVY), y las infecciones simples con PVX o PVY. Adems, los cambios transcriptmicos y hormonales asociados a la infeccin con la quimera viral PVX/HCPro, que reproduce los sntomas del sinergismo entre PVXpotyvirus, se han comparado con aquellos producidos por otros dos tipos de muerte celular, la PCD ligada a una interaccin incompatible y la PCD producida por la disfuncin del proteasoma. Por ltimo, tcnicas de gentica reversa han permitido conocer la implicacin de factores del husped, como las oxilipinas, en el desarrollo de la NS asociada al sinergismo entre PVXpotyvirus. Los resultados revelan que, respecto a las infecciones con solo uno de los virus, la infeccin doble con PVXPVY produce en el husped diferencias cualitativas adems de cuantitativas en el perfil transcriptmico relacionado con el metabolismo primario. Otros cambios en la expresin gnica, que reflejan la activacin de mecanismos de defensa, correlacionan con un fuerte estrs oxidativo en las plantas doblemente infectadas que no se detecta en las infecciones simples. Adems, medidas en la acumulacin de determinados miRNAs implicados en diversos procesos celulares muestran como la infeccin doble altera de manera diferencial tanto la acumulacin de estos miRNAs como su funcionalidad, lo cual podra estar relacionado con los cambios en el transcriptoma, as como con la sintomatologa de la infeccin. La comparacin a nivel transcriptmico y hormonal entre la NS producida por PVX/HCPro y la interaccin incompatible del Virus del mosaico del tabaco en plantas que expresan el gen N de resistencia (SHR), muestra que la respuesta en la interaccin compatible es similar a la que se produce durante la SHR, si bien se presenta de manera retardada en el tiempo. Sin embargo, los perfiles de expresin de genes de defensa y de respuesta a hormonas, as como la acumulacin relativa de cido saliclico (SA), cido jasmonico (JA) y cido abscsico, en la interaccin compatible son ms semejantes a la respuesta PCD producida por la disfuncin del proteasoma que a la interaccin incompatible. Estos datos sugieren una contribucin de la interferencia sobre la funcionalidad del proteasoma en el incremento de la patogenicidad, observado en el sinergismo PVXpotyvirus. Por ltimo, los resultados obtenidos al disminuir la expresin de 9LOX, DOX1 y COI1, relacionados con la sntesis o con la sealizacin de oxilipinas, y mediante la aplicacin exgena de JA y SA, muestran la implicacin del metabolismo de las oxilipinas en el desarrollo de la NS producida por la infeccin sinrgica entre PVXpotyvirus en N. benthamiana. Adems, estos resultados indican que la PCD asociada a esta infeccin, al igual que ocurre en interacciones incompatibles, no contiene necesariamente la acumulacin viral, lo cual indica que necrosis e inhibicin de la multiplicacin viral son procesos independientes. ABSTRACT Plant viruses cause severe diseases that lead to serious economic losses worldwide. Moreover, simultaneous infections with several viruses are common in nature leading to exacerbation of the disease symptoms. This phenomenon is known as viral synergism. Systemic necrosis (SN) is one of the most severe symptoms caused by plant viruses in susceptible plants, even leading to death of the host. This phenotype has been compared with the hypersensitive response (HR) displayed by resistant plants, and some parallelisms have been found between both responses, which suggest that SN induced by compatible interactions could be the result of a systemic hypersensitive response (SHR). However, the molecular mechanisms involved in the development of SN, its relationship with antiviral defence processes and its biological relevance are still unknown. Furthermore, the changes produced in plants by mixed infections that cause synergistic pathological effects have not been studied in a genomewide scale. In this doctoral thesis different approaches have been used to analyse gene expression, together with other genetic and biochemical techniques, in the model plant Nicotiana benthamiana, in order to study the SN produced by the synergistic infection of Potato virus X (PVX) with several potyviruses. Genomic and physiological changes produced in the host by double infection with PVX and Potato virus Y (PVY), and by single infection with PVX or PVY have been compared. In addition, transcriptional and hormonal changes associated with infection by the chimeric virus PVX/HCPro, which produces synergistic symptoms similar to those caused by PVXpotyvirus, have been compared with those produced by other types of cell death. These types of cell death are: PCD associated with an incompatible interaction, and PCD produced by proteasome disruption. Finally, reverse genetic techniques have revealed the involvement of host factors, such as oxylipins, in the development of SN associated with PVXpotyvirus synergism. The results revealed that compared with single infections, double infection with PVXPVY produced qualitative and quantitative differences in the transcriptome profile, mainly related to primary metabolism. Other changes in gene expression, which reflected the activation of defence mechanisms, correlated with a severe oxidative stress in doubly infected plants that was undetected in single infections. Additionally, accumulation levels of several miRNAs involved in different cellular processes were measured, and the results showed that double infection not only produced the greatest variations in miRNA accumulation levels but also in miRNA functionality. These variations could be related with transcriptomic changes and the symptomatology of the infection. Transcriptome and hormone level comparisons between SN induced by PVX/HCPro and the incompatible interaction produced by Tobacco mosaic virus in plants expressing the N resistance gene (SHR), showed some similarities between both responses, even though the compatible interaction appeared retarded in time. Nevertheless, the expression profiles of both defencerelated genes and hormoneresponsive genes, as well as the relative accumulation of salicylic acid (SA), jasmonic acid (JA) and abscisic acid in the compatible interaction are more similar to the PCD response produced by proteasome disruption. These data suggest that interference with proteasome functionality contributes to the increase in pathogenicity associated with PVXpotyvirus synergism. Finally, the results obtained by reducing the expression of 9LOX, DOX1 and COI1, related with synthesis or signalling of oxylipins, and by applying exogenously JA and SA, revealed that oxylipin metabolism is involved in the development of SN induced by PVXpotyvirus synergistic infections in N. benthamiana. Moreover, these results also indicated that PVXpotyvirus associated PCD does not necessarily restrict viral accumulation, as is also the case in incompatible interactions. This indicates that both necrosis and inhibition of viral multiplication are independent processes.
Resumo:
El tomate (Solanum lycopersicum L.) es considerado uno de los cultivos hortcolas de mayor importancia econmica en el territorio Espaol. Sin embargo, su produccin est seriamente afectada por condiciones ambientales adversas como, salinidad, sequa y temperaturas extremas. Para resolver los problemas que se presentan en condiciones de estrs, se han empleado una serie de tcnicas culturales que disminuyen sus efectos negativos, siendo de gran inters el desarrollo de variedades tolerantes. En este sentido la obtencin y anlisis de plantas transgnicas, ha supuesto un avance tecnolgico, que ha facilitado el estudio y la evaluacin de genes seleccionados en relacin con la tolerancia al estrs. Estudios recientes han mostrado que el uso de genes reguladores como factores de transcripcin (FTs) es una gran herramienta para obtener nuevas variedades de tomate con mayor tolerancia a estreses abiticos. Las protenas DOF (DNA binding with One Finger) son una familia de FTs especfica de plantas (Yangisawa, 2002), que estn involucrados en procesos fisiolgicos exclusivos de plantas como: asimilacin del nitrgeno y fijacin del carbono fotosinttico, germinacin de semilla, metabolismo secundario y respuesta al fotoperiodo pero su preciso rol en la tolerancia a estrs abitico se desconoce en gran parte. El trabajo descrito en esta tesis tiene como objetivo estudiar genes reguladores tipo DOF para incrementar la tolerancia a estrs abiotico tanto en especies modelo como en tomate. En el primer captulo de esta tesis se muestra la caracterizacin funcional del gen CDF3 de Arabidopsis, as como su papel en la respuesta a estrs abitico y otros procesos del desarrollo. La expresin del gen AtCDF3 es altamente inducido por sequa, temperaturas extremas, salinidad y tratamientos con cido abscsico (ABA). La lnea de insercin T-DNA cdf3-1 es ms sensible al estrs por sequa y bajas temperaturas, mientras que lneas transgnicas de Arabidopsis 35S::AtCDF3 aumentan la tolerancia al estrs por sequa, osmtico y bajas temperaturas en comparacin con plantas wild-type (WT). Adems, estas plantas presentan un incremento en la tasa fotosinttica y apertura estomtica. El gen AtCDF3 se localiza en el ncleo y que muestran una unin especfica al ADN con diferente afinidad a secuencias diana y presentan diversas capacidades de activacin transcripcional en ensayos de protoplastos de Arabidopsis. El dominio C-terminal de AtCDF3 es esencial para esta localizacin y su capacidad activacin, la deleccin de este dominio reduce la tolerancia a sequa en plantas transgnicas 35S::AtCDF3. Anlisis por microarray revelan que el AtCDF3 regula un set de genes involucrados en el metabolismo del carbono y nitrgeno. Nuestros resultados demuestran que el gen AtCDF3 juega un doble papel en la regulacin de la respuesta a estrs por sequa y bajas temperaturas y en el control del tiempo de floracin. En el segundo captulo de este trabajo se lleva a cabo la identificacin de 34 genes Dof en tomate que se pueden clasificar en base a homologa de secuencia en cuatro grupos A-D, similares a los descritos en Arabidopsis. Dentro del grupo D se han identificado cinco genes DOF que presentan caractersticas similares a los Cycling Dof Factors (CDFs) de Arabidopsis. Estos genes son considerados ortlogos de Arabidopsis CDF1-5, y han sido nombrados como Solanum lycopersicum CDFs o SlCDFs. Los SlCDF1-5 son protenas nucleares que muestran una unin especfica al ADN con diferente afinidad a secuencias diana y presentan diversas capacidades de activacin transcripcional in vivo. Anlisis de expresin de los genes SlCDF1-5 muestran diferentes patrones de expresin durante el da y son inducidos de forma diferente en respuesta a estrs osmtico, salino, y de altas y bajas temperaturas. Plantas de Arabidopsis que sobre-expresan SlCDF1 y SlCDF3 muestran un incremento de la tolerancia a la sequa y salinidad. Adems, de la expresin de varios genes de respuesta estrs como AtCOR15, AtRD29A y AtERD10, son expresados de forma diferente en estas lneas. La sobre-expresin de SlCDF3 en Arabidopsis promueve un retardo en el tiempo de floracin a travs de la modulacin de la expresin de genes que controlan la floracin como CONSTANS (CO) y FLOWERING LOCUS T (FT). En general, nuestros datos demuestran que los SlCDFs estn asociados a funciones aun no descritas, relacionadas con la tolerancia a estrs abitico y el control del tiempo de floracin a travs de la regulacin de genes especficos y a un aumento de metabolitos particulares. ABSTRACT Tomato (Solanum lycopersicum L.) is one of the horticultural crops of major economic importance in the Spanish territory. However, its production is being affected by adverse environmental conditions such as salinity, drought and extreme temperatures. To resolve the problems triggered by stress conditions, a number of agricultural techniques that reduce the negative effects of stress are being frequently applied. However, the development of stress tolerant varieties is of a great interest. In this direction, the technological progress in obtaining and analysis of transgenic plants facilitated the study and evaluation of selected genes in relation to stress tolerance. Recent studies have shown that a use of regulatory genes such as transcription factors (TFs) is a great tool to obtain new tomato varieties with greater tolerance to abiotic stresses. The DOF (DNA binding with One Finger) proteins form a family of plant-specific TFs (Yangisawa, 2002) that are involved in the regulation of particular plant processes such as nitrogen assimilation, photosynthetic carbon fixation, seed germination, secondary metabolism and flowering time bur their precise roles in abiotic stress tolerance are largely unknown. The work described in this thesis aims at the study of the DOF type regulatory genes to increase tolerance to abiotic stress in both model species and the tomato. In the first chapter of this thesis, we present molecular characterization of the Arabidopsis CDF3 gene as well as its role in the response to abiotic stress and in other developmental processes. AtCDF3 is highly induced by drought, extreme temperatures, salt and abscisic acid (ABA) treatments. The cdf3-1 T-DNA insertion mutant was more sensitive to drought and low temperature stresses, whereas the AtCDF3 overexpression enhanced the tolerance of transgenic plants to drought, cold and osmotic stress comparing to the wild-type (WT) plants. In addition, these plants exhibit increased photosynthesis rates and stomatal aperture. AtCDF3 is localized in the nuclear region, displays specific binding to the canonical DNA target sequences and has a transcriptional activation activity in Arabidopsis protoplast assays. In addition, the C-terminal domain of AtCDF3 is essential for its localization and activation capabilities and the deletion of this domain significantly reduces the tolerance to drought in transgenic 35S::AtCDF3 overexpressing plants. Microarray analysis revealed that AtCDF3 regulated a set of genes involved in nitrogen and carbon metabolism. Our results demonstrate that AtCDF3 plays dual roles in regulating plant responses to drought and low temperature stress and in control of flowering time in vegetative tissues. In the second chapter this work, we carried out to identification of 34 tomato DOF genes that were classified by sequence similarity into four groups A-D, similar to the situation in Arabidopsis. In the D group we have identified five DOF genes that show similar characteristics to the Cycling Dof Factors (CDFs) of Arabidopsis. These genes were considered orthologous to the Arabidopsis CDF1 - 5 and were named Solanum lycopersicum CDFs or SlCDFs. SlCDF1-5 are nuclear proteins that display specific binding to canonical DNA target sequences and have transcriptional activation capacities in vivo. Expression analysis of SlCDF1-5 genes showed distinct diurnal expression patterns and were differentially induced in response to osmotic, salt and low and high temperature stresses. Arabidopsis plants overexpressing SlCDF1 and SlCDF3 showed increased drought and salt tolerance. In addition, various stress-responsive genes, such as AtCOR15, AtRD29A and AtERD10, were expressed differently in these lines. The overexpression of SlCDF3 in Arabidopsis also results in the late flowering phenotype through the modulation of the expression of flowering control genes such CONSTANS (CO) and FLOWERING LOCUS T (FT). Overall, our data connet SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.
Resumo:
Las NADPH oxidasas de plantas, denominadas respiratory burst oxidase homologues (RBOHs), producen especies reactivas del oxgeno (ROS) que median un amplio rango de funciones. En la clula vegetal, el ajuste preciso de la produccin de ROS aporta la especificidad de seal para generar una respuesta apropiada ante las amenazas ambientales. RbohD y RbohF, dos de los diez genes Rboh de Arabidopsis, son pleiotrpicos y median diversos procesos fisiolgicos en respuesta a patgenos. El control espacio-temporal de la expresin de los genes RbohD y RbohF podra ser un aspecto crtico para determinar la multiplicidad de funciones de estas oxidasas. Por ello, generamos lneas transgnicas de Arabidopsis con fusiones de los promoters de RbohD y RbohF a los genes delatores de la B-glucuronidasa y la luciferasa. Estas lneas fueron empleadas para revelar el patrn de expresin diferencial de RbohD y RbohF durante la respuesta inmune de Arabidopsis a la bacteria patgena Pseudomonas syringae pv. tomato DC3000, el hongo necrtrofo Plectosphaerella cucumerina y en respuesta a seales relacionadas con la respuesta inmune. Nuestros experimentos revelan un patrn de expresin diferencial de los promotores de RbohD y RbohF durante el desarrollo de la planta y en la respuesta inmune de Arabidopsis. Adems hemos puesto de manifiesto que existe una correlacin entre el nivel de actividad de los promotores de RbohD y RbohF con la acumulacin de ROS y el nivel de muerte celular en respuesta a patgenos. La expression de RbohD y RbohF tambin es modulada de manera diferencial en respuesta a patrones moleculares asociados a patgenos (PAMPs) y por cido abscsico (ABA). Cabe destacar que, mediante una estrategia de intercambio de promotores, hemos revelado que la regin promotora de RbohD, es necesaria para dirigir la produccin de ROS en respuesta a P. cucumerina. Adicionalmente, la activacin del promotor de RbohD en respuesta al aislado de P. cucumerina no adaptado a Arabidopsis 2127, nos llev a realizar ensayos de susceptibilidad con el doble mutante rbohD rbohF que han revelado un papel desconocido de estas oxidasas en resistencia no-huesped. La interaccin entre la sealizacin dependiente de las RBOHs y otros componentes de la respuesta inmune de plantas podra explicar tambin las distintas funciones que median estas oxidasas en relacin con la respuesta inmune. Entre la gran cantidad de seales coordinadas con la actividad de las RBOHs, existen evidencias genticas y farmacolgicas que indican que las protenas G heterotrimricas estn implicadas en algunas de las rutas de sealizacin mediadas por ROS derivadas de los RBOHs en respuesta a seales ambientales. Por ello hemos estudiado la relacin entre estas RBOH-NADPH oxidasas y AGB1, la subunidad de las protenas G heterotrimricas en la respuesta inmune de Arabidopsis. Anlisis de epistasis indican que las protenas G heterotrimricas estn implicadas en distintas rutas de sealizacin en defensa mediadas por las RBOHs. Nuestros resultados ilustran la relacin compleja entre la sealizacin mediada por las RBOHs y las protenas G heterotrimricas, que vara en funcin de la interaccin planta-patgeno analizada. Adems, hemos explorado la posible asociacin entre AGB1 con RBOHD y RBOHF en eventos tempranos de la respuesta immune. Cabe sealar que experimentos de communoprecipitacin apuntan a una posible asociacin entre AGB1 y la kinasa citoplasmtica reguladora de RBOHD, BIK1. Esto indica un posible mecanismo de control de la funcin de esta NADPH oxidase por AGB1. En conjunto, estos datos aportan nuevas perspectivas sobre cmo, a travs del control transcripcional o mediante la interaccin con las protenas G heterotrimricas, las NADPH oxidases de plantas median la produccin de ROS y la sealizacin por ROS en la respuesta inmune. Nuestro trabajo ejemplifica cmo la regulacin diferencial de dos miembros de una familia multignica, les permite realizar distintas funciones fisiolgicas especializadas usando un mismo mecanismo enzimtico. ABSTRACT The plant NADPH oxidases, termed respiratory burst oxidase homologues (RBOHs), produce reactive oxygen species (ROS) which mediate a wide range of functions. Fine tuning this ROS production provides the signaling specificity to the plant cell to produce the appropriate response to environmental threats. RbohD and RbohF, two of the ten Rboh genes present in Arabidopsis, are pleiotropic and mediate diverse physiological processes in response to pathogens. One aspect that may prove critical to determine the multiplicity of functions of RbohD and RbohF is the spatio-temporal control of their gene expression. Thus, we generated Arabidopsis transgenic lines with RbohD- and RbohF-promoter fusions to the -glucuronidase and the luciferase reporter genes. These transgenics were employed to reveal RbohD and RbohF promoter activity during Arabidopsis immune response to the pathogenic bacterium Pseudomonas syringae pv tomato DC3000, the necrotrophic fungus Plectosphaerella cucumerina and in response to immunity-related cues. Our experiments revealed a differential expression pattern of RbohD and RbohF throughout plant development and during Arabidopsis immune response. Moreover, we observed a correlation between the level of RbohD and RbohF promoter activity, the accumulation of ROS and the amount of cell death in response to pathogens. RbohD and RbohF gene expression was also differentially modulated by pathogen associated molecular patterns and abscisic acid. Interestingly, a promoter-swap strategy revealed the requirement for the promoter region of RbohD to drive the production of ROS in response to P. cucumerina. Additionally, since the RbohD promoter was activated during Arabidopsis interaction with a non-adapted P. cucumerina isolate 2127, we performed susceptibility tests to this fungal isolate that uncovered a new role of these oxidases on non-host resistance. The interplay between RBOH-dependent signaling with other components of the plant immune response might also explain the different immunity-related functions mediated by these oxidases. Among the plethora of signals coordinated with RBOH activity, pharmacological and genetic evidence indicates that heterotrimeric G proteins are involved in some of the signaling pathways mediated by RBOHderived ROS in response to environmental cues. Therefore, we analysed the interplay between these RBOH-NADPH oxidases and AGB1, the Arabidopsis -subunit of heterotrimeric G proteins during Arabidopsis immune response. We carried out epistasis studies that allowed us to test the implication of AGB1 in different RBOH-mediated defense signaling pathways. Our results illustrate the complex relationship between RBOH and heterotrimeric G proteins signaling, that varies depending on the type of plant-pathogen interaction. Furthermore, we tested the potential association between AGB1 with RBOHD and RBOHF during early immunity. Interestingly, our co-immunoprecipitation experiments point towards an association of AGB1 and the RBOHD regulatory kinase BIK1, thus providing a putative mechanism in the control of the NADPH oxidase function by AGB1. Taken all together, these studies provide further insights into the role that transcriptional control or the interaction with heterotrimeric G-proteins have on RBOH-NADPH oxidase-dependent ROS production and signaling in immunity. Our work exemplifies how, through a differential regulation, two members of a multigenic family achieve specialized physiological functions using a common enzymatic mechanism.
Resumo:
Las cascadas de sealizacin mediadas por protena quinasas activadas por mitgeno (MAP quinasas) son capaces de integrar y transducir seales ambientales en respuestas celulares. Entre estas seales se encuentran los PAMPs/MAMPs (Pathogen/Microbe-Associated Molecular Patterns), que son molculas de patgenos o microorganismos, o los DAMPs (Damaged-Associated Molecular Patterns), que son molculas derivadas de las plantas producidas en respuesta a dao celular. Tras el reconocimiento de los PAMPs/DAMPs por receptores de membrana denominados PRRs (Pattern Recognition Receptors), como los receptores con dominio quinasa (RLKs) o los receptores sin dominio quinasa (RLPs), se activan respuestas moleculares, incluidas cascadas de MAP quinasas, que regulan la puesta en marcha de la inmunidad activada por PAMPs (PTI). Esta Tesis describe la caracterizacin funcional de la MAP quinasa quinasa quinasa (MAP3K) YODA (YDA), que acta como un regulador clave de la PTI en Arabidopsis. Se ha descrito previamente que YDA controla varios procesos de desarrollo, como la regulacin del patrn estomtico, la elongacin del zigoto y la arquitectura floral. Hemos caracterizado un alelo mutante hipomrfico de YDA (elk2 o yda11) que presenta una elevada susceptibilidad a patgenos bitrofos y necrtrofos. Notablemente, plantas que expresan una forma constitutivamente activa de YDA (CA-YDA), con una delecin en el dominio N-terminal, presentan una resistencia de amplio espectro frente a diferentes tipos de patgenos, incluyendo hongos, oomicetos y bacterias, lo que indica que YDA juega un papel importante en la regulacin de la resistencia de las plantas a patgenos. Nuestros datos indican que esta funcin es independiente de las respuestas inmunes mediadas por los receptores previamente caracterizados FLS2 y CERK1, que reconocen los PAMPs flg22 y quitina, respectivamente, y que estn implicados en la resistencia de Arabidopsis frente a bacterias y hongos. Hemos demostrado que YDA controla la resistencia frente al hongo necrtrofo Plectosphaerella cucumerina y el patrn estomtico mediante su interaccin gentica con la RLK ERECTA (ER), un PRR implicado en la regulacin de estos procesos. Por el contrario, la interaccin gentica entre ER y YDA en la regulacin de otros procesos de desarrollo es aditiva en lugar de episttica. Anlisis genticos indicaron que MPK3, una MAP quinasa que funciona aguas abajo de YDA en el desarrollo estomtico, es un componente de la ruta de sealizacin mediada por YDA para la resistencia frente a P. cucumerina, lo que sugiere que el desarrollo de las plantas y la PTI comparten el mdulo de transduccin de MAP quinasas asociado a YDA. Nuestros experimentos han revelado que la resistencia mediada por YDA es independiente de las rutas de sealizacin reguladas por las hormonas de defensa cido saliclico, cido jasmnico, cido abscsico o etileno, y tambin es independiente de la ruta de metabolitos secundarios derivados del triptfano, que estn implicados en inmunidad vegetal. Adems, hemos demostrado que respuestas asociadas a PTI, como el aumento en la concentracin de calcio citoplsmico, la produccin de especies reactivas de oxgeno, la fosforilacin de MAP quinasas y la expresin de genes de defensa, no estn afectadas en el mutante yda11. La expresin constitutiva de la protena CA-YDA en plantas de Arabidopsis no provoca un aumento de las respuestas PTI, lo que sugiere la existencia de mecanismos de resistencia adicionales regulados por YDA que son diferentes de los regulados por FLS2 y CERK1. En lnea con estos resultados, nuestros datos transcriptmicos revelan una sobre-representacin en plantas CA-YDA de genes de defensa que codifican, por ejemplo, pptidos antimicrobianos o reguladores de muerte celular, o protenas implicadas en la biognesis de la pared celular, lo que sugiere una conexin potencial entre la composicin e integridad de la pared celular y la resistencia de amplio espectro mediada por YDA. Adems, anlisis de fosfoprotemica indican la fosforilacin diferencial de protenas relacionadas con la pared celular en plantas CA-YDA en comparacin con plantas silvestres. El posible papel de la ruta ER-YDA en la regulacin de la integridad de la pared celular est apoyado por anlisis bioqumicos y glicmicos de las paredes celulares de plantas er, yda11 y CA-YDA, que revelaron cambios significativos en la composicin de la pared celular de estos genotipos en comparacin con la de plantas silvestres. En resumen, nuestros datos indican que ER y YDA forman parte de una nueva ruta de inmunidad que regula la integridad de la pared celular y respuestas defensivas, confiriendo una resistencia de amplio espectro frente a patgenos. ABSTRACT Plant mitogen-activated protein kinase (MAPK) cascades transduce environmental signals and developmental cues into cellular responses. Among these signals are the pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) and the damage-associated molecular patterns (DAMPs). These PAMPs/DAMPs, upon recognition by plant pattern recognition receptors (PRRs), such as Receptor-Like Kinases (RLKs) and Receptor-Like Proteins (RLPs), activate molecular responses, including MAPK cascades, which regulate the onset of PAMP-triggered immunity (PTI). This Thesis describes the functional characterization of the MAPK kinase kinase (MAP3K) YODA (YDA) as a key regulator of Arabidopsis PTI. YDA has been previously described to control several developmental processes, such as stomatal patterning, zygote elongation and inflorescence architecture. We characterized a hypomorphic, non-embryo lethal mutant allele of YDA (elk2 or yda11) that was found to be highly susceptible to biotrophic and necrotrophic pathogens. Remarkably, plants expressing a constitutive active form of YDA (CA-YDA), with a deletion in the N-terminal domain, showed broad-spectrum resistance to different types of pathogens, including fungi, oomycetes and bacteria, indicating that YDA plays a relevant function in plant resistance to pathogens. Our data indicated that this function is independent of the immune responses regulated by the well characterized FLS2 and CERK1 RLKs, which are the PRRs recognizing flg22 and chitin PAMPs, respectively, and are required for Arabidopsis resistance to bacteria and fungi. We demonstrate that YDA controls resistance to the necrotrophic fungus Plectosphaerella cucumerina and stomatal patterning by genetically interacting with ERECTA (ER) RLK, a PRR involved in regulating these processes. In contrast, the genetic interaction between ER and YDA in the regulation of other ER-associated developmental processes was additive, rather than epistatic. Genetic analyses indicated that MPK3, a MAP kinase that functions downstream of YDA in stomatal development, also regulates plant resistance to P. cucumerina in a YDA-dependent manner, suggesting that the YDA-associated MAPK transduction module is shared in plant development and PTI. Our experiments revealed that YDA-mediated resistance was independent of signalling pathways regulated by defensive hormones like salicylic acid, jasmonic acid, abscisic acid or ethylene, and of the tryptophan-derived metabolites pathway, which are involved in plant immunity. In addition, we showed that PAMP-mediated PTI responses, such as the increase of cytoplasmic Ca2+ concentration, reactive oxygen species (ROS) burst, MAPK phosphorylation, and expression of defense-related genes are not impaired in the yda11 mutant. Furthermore, the expression of CA-YDA protein does not result in enhanced PTI responses, further suggesting the existence of additional mechanisms of resistance regulated by YDA that differ from those regulated by the PTI receptors FLS2 and CERK1. In line with these observations, our transcriptomic data revealed the over-representation in CA-YDA plants of defensive genes, such as those encoding antimicrobial peptides and cell death regulators, and genes encoding cell wall-related proteins, suggesting a potential link between plant cell wall composition and integrity and broad spectrum resistance mediated by YDA. In addition, phosphoproteomic data revealed an over-representation of genes encoding wall-related proteins in CA-YDA plants in comparison with wild-type plants. The putative role of the ER-YDA pathway in regulating cell wall integrity was further supported by biochemical and glycomics analyses of er, yda11 and CA-YDA cell walls, which revealed significant changes in the cell wall composition of these genotypes compared with that of wild-type plants. In summary, our data indicate that ER and YDA are components of a novel immune pathway that regulates cell wall integrity and defensive responses, which confer broad-spectrum resistance to pathogens.