5 resultados para Abel, Tauber and Littlewood Type Theorems

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical Kramer sampling theorem, which provides a method for obtaining orthogonal sampling formulas, can be formulated in a more general nonorthogonal setting. In this setting, a challenging problem is to characterize the situations when the obtained nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series. In this article a necessary and sufficient condition is given in terms of the zero removing property. Roughly speaking, this property concerns the stability of the sampled functions on removing a finite number of their zeros.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The threat of impact or explosive loads is regrettably a scenario to be taken into account in the design of lifeline or critical civilian buildings. These are often made of concrete and not specifically designed for military threats. Numerical simulation of such cases may be undertaken with the aid of state of the art explicit dynamic codes, however several difficult challenges are inherent to such models: the material modeling for the concrete anisotropic failure, consideration of reinforcement bars and important structural details, adequate modeling of pressure waves from explosions in complex geometries, and efficient solution to models of complete buildings which can realistically assess failure modes. In this work we employ LS-Dyna for calculation, with Lagrangian finite elements and explicit time integration. Reinforced concrete may be represented in a fairly accurate fashion with recent models such as CSCM model [1] and segregated rebars constrained within the continuum mesh. However, such models cannot be realistically employed for complete models of large buildings, due to limitations of time and computer resources. The use of structural beam and shell elements for this purpose would be the obvious solution, with much lower computational cost. However, this modeling requires careful calibration in order to reproduce adequately the highly nonlinear response of structural concrete members, including bending with and without compression, cracking or plastic crushing, plastic deformation of reinforcement, erosion of vanished elements etc. The main objective of this work is to provide a strategy for modeling such scenarios based on structural elements, using available material models for structural elements [2] and techniques to include the reinforcement in a realistic way. These models are calibrated against fully three-dimensional models and shown to be accurate enough. At the same time they provide the basis for realistic simulation of impact and explosion on full-scale buildings

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a new class of Kramer kernels is introduced, motivated by the resolvent of a symmetric operator with compact resolvent. The article gives a necessary and sufficient condition to ensure that the associ- ated sampling formula can be expressed as a Lagrange-type interpolation series. Finally, an illustrative example, taken from the Hamburger moment problem theory, is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient response of a system of independent electrodes buried in a semi-infinite conducting medium is studied. Using a simple and versatile numerical scheme written by the authors and based on the Electric Field Integral Equation (EFIE), the effect caused by harmonic signals ranging on frequency from Hz to hundred of MHz, and also by lightning type driving signal striking at a remote point far from the conductors, is extensively studied. The value of the scalar potential appearing on the electrodes as a function of the frequency of the applied signal is one of the variables investigated. Other features such as the input impedance at the injection point of the signal and the Ground Potential Rise (GPR) over the electrode system are also discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the gasification of two biomass types (pine wood and olive stones) in a laboratory scale bubbling fluidized bed reactor, in order to evaluate comparatively their potential in the production of syngas.