5 resultados para Abdominal adiposity
em Universidad Politécnica de Madrid
Resumo:
To propose an automated patient-specific algorithm for the creation of accurate and smooth meshes of the aortic anatomy, to be used for evaluating rupture risk factors of abdominal aortic aneurysms (AAA). Finite element (FE) analyses and simulations require meshes to be smooth and anatomically accurate, capturing both the artery wall and the intraluminal thrombus (ILT). The two main difficulties are the modeling of the arterial bifurcations, and of the ILT, which has an arbitrary shape that is conforming to the aortic wall.
Resumo:
A semi-automatic segmentation algorithm for abdominal aortic aneurysms (AAA), and based on Active Shape Models (ASM) and texture models, is presented in this work. The texture information is provided by a set of four 3D magnetic resonance (MR) images, composed of axial slices of the abdomen, where lumen, wall and intraluminal thrombus (ILT) are visible. Due to the reduced number of images in the MRI training set, an ASM and a custom texture model based on border intensity statistics are constructed. For the same reason the shape is characterized from 35-computed tomography angiography (CTA) images set so the shape variations are better represented. For the evaluation, leave-one-out experiments have been held over the four MRI set.
Resumo:
A novel method for generating patient-specific high quality conforming hexahedral meshes is presented. The meshes are directly obtained from the segmentation of patient magnetic resonance (MR) images of abdominal aortic aneu-rysms (AAA). The MRI permits distinguishing between struc-tures of interest in soft tissue. Being so, the contours of the lumen, the aortic wall and the intraluminal thrombus (ILT) are available and thus the meshes represent the actual anato-my of the patient?s aneurysm, including the layered morpholo-gies of these structures. Most AAAs are located in the lower part of the aorta and the upper section of the iliac arteries, where the inherent tortuosity of the anatomy and the presence of the ILT makes the generation of high-quality elements at the bifurcation is a challenging task. In this work we propose a novel approach for building quadrilateral meshes for each surface of the sectioned geometry, and generating conforming hexahedral meshes by combining the quadrilateral meshes. Conforming hexahedral meshes are created for the wall and the ILT. The resulting elements are evaluated on four patients? datasets using the Scaled Jacobian metric. Hexahedral meshes of 25,000 elements with 94.8% of elements well-suited for FE analysis are generated.
Resumo:
In order to perform finite element (FE) analyses of patient-specific abdominal aortic aneurysms, geometries derived from medical images must be meshed with suitable elements. We propose a semi-automatic method for generating conforming hexahedral meshes directly from contours segmented from medical images. Magnetic resonance images are generated using a protocol developed to give the abdominal aorta high contrast against the surrounding soft tissue. These data allow us to distinguish between the different structures of interest. We build novel quadrilateral meshes for each surface of the sectioned geometry and generate conforming hexahedral meshes by combining the quadrilateral meshes. The three-layered morphology of both the arterial wall and thrombus is incorporated using parameters determined from experiments. We demonstrate the quality of our patient-specific meshes using the element Scaled Jacobian. The method efficiently generates high-quality elements suitable for FE analysis, even in the bifurcation region of the aorta into the iliac arteries. For example, hexahedral meshes of up to 125,000 elements are generated in less than 130 s, with 94.8 % of elements well suited for FE analysis. We provide novel input for simulations by independently meshing both the arterial wall and intraluminal thrombus of the aneurysm, and their respective layered morphologies.
Resumo:
Ponencia sobre el efecto de un polimorfismo del gen ADRB3 sobre masa grasa en mujeres con sobrepeso y obesidad.