3 resultados para ASYMPTOTIC NUMBER

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single, nonlocal expression for the electron heat flux, which closely reproduces known results at high and low ion charge number 2, and “exact” results for the local limit at all 2, is derived by solving the kinetic equation in a narrow, tail-energy range. The solution involves asymptotic expansions of Bessel functions of large argument, and (Z-dependent)order above or below it, corresponding to the possible parabolic or hyperbolic character of the kinetic equation; velocity space diffusion in self-scattering is treated similarly to isotropic thermalization of tail energies in large Z analyses. The scale length H characterizing nonlocal effects varies with Z, suggesting an equal dependence of any ad hoc flux limiter. The model is valid for all H above the mean-free path for thermal electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical expressions for current to a cylindrical Langmuir probe at rest in unmagnetized plasma are compared with results from both steady-state Vlasov and particle-in-cell simulations. Probe bias potentials that are much greater than plasma temperature (assumed equal for ions and electrons), as of interest for bare conductive tethers, are considered. At a very high bias, both the electric potential and the attracted-species density exhibit complex radial profiles; in particular, the density exhibits a minimum well within the plasma sheath and a maximum closer to the probe. Excellent agreement is found between analytical and numerical results for values of the probe radiusR close to the maximum radius Rmax for orbital-motion-limited (OML) collection at a particular bias in the following number of profile features: the values and positions of density minimum and maximum, position of sheath boundary, and value of a radius characterizing the no-space-charge behavior of a potential near the high-bias probe. Good agreement between the theory and simulations is also found for parametric laws jointly covering the following three characteristic R ranges: sheath radius versus probe radius and bias for Rmax; density minimum versus probe bias for Rmax; and (weakly bias-dependent) current drop below the OML value versus the probe radius for R > Rmax.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract We consider a wide class of models that includes the highly reliable Markovian systems (HRMS) often used to represent the evolution of multi-component systems in reliability settings. Repair times and component lifetimes are random variables that follow a general distribution, and the repair service adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly-dependable systems, the RESTART method is used for the estimation of steady-state unavailability and other reliability measures. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty involved in applying this method is finding a suitable function, called the importance function, to define the regions. In this paper we introduce an importance function which, for unbalanced systems, represents a great improvement over the importance function used in previous papers. We also demonstrate the asymptotic optimality of RESTART estimators in these models. Several examples are presented to show the effectiveness of the new approach, and probabilities up to the order of 10-42 are accurately estimated with little computational effort.