10 resultados para ARN ribosomique
em Universidad Politécnica de Madrid
Resumo:
El presente proyecto se centra en el estudio de la influencia que ejerce el contenido de humedad en la madera sobre mediciones realizadas mediante diversos ensayos no destructivos (NDT – Non Destructive Tests-). El objetivo es encontrar la relación entre el contenido de humedad de la madera de varias especies del género Pinus (Pinus nigra Arn, Pinus radiata D.Don. y Pinus sylvestris Ait.) y los resultados de diferentes NDT (penetrómetro, resistencia al arranque de tornillos y velocidad de propagación de ondas inducidas y ultrasonidos), y en caso de existir, tratar de elaborar un modelo o factor de corrección que nos permita tener en cuenta dicha influencia en futuros NDT.
Resumo:
La computación molecular es una disciplina que se ocupa del diseño e implementación de dispositivos para el procesamiento de información sobre un sustrato biológico, como el ácido desoxirribonucleico (ADN), el ácido ribonucleico (ARN) o las proteínas. Desde que Watson y Crick descubrieron en los años cincuenta la estructura molecular del ADN en forma de doble hélice, se desencadenaron otros descubrimientos como las enzimas que cortan el ADN o la reacción en cadena de la polimerasa (PCR), contribuyendo más que signi�cativamente a la irrupción de la tecnología del ADN recombinante. Gracias a esta tecnología y al descenso vertiginoso de los precios de secuenciación y síntesis del ADN, la computación biomolecular pudo abandonar su concepción puramente teórica. En 1994, Leonard Adleman logró resolver un problema de computación NP-completo (El Problema del Camino de Hamilton Dirigido) utilizando únicamente moléculas de ADN. La gran capacidad de procesamiento en paralelo ofrecida por las técnicas del ADN recombinante permitió a Adleman ser capaz de resolver dicho problema en tiempo polinómico, aunque a costa de un consumo exponencial de moléculas de ADN. Utilizando algoritmos similares al de �fuerza bruta� utilizado por Adleman se logró resolver otros problemas NP-completos (por ejemplo, el de Satisfacibilidad de Fórmulas Lógicas / SAT). Pronto se comprendió que la computación con biomolecular no podía competir en velocidad ni precisión con los ordenadores de silicio, por lo que su enfoque y objetivos se centraron en la resolución de problemas biológicos con aplicación biomédica, dejando de lado la resolución de problemas clásicos de computación. Desde entonces se han propuesto diversos modelos de dispositivos biomoleculares que, de forma autónoma (sin necesidad de un bio-ingeniero realizando operaciones de laboratorio), son capaces de procesar como entrada un sustrato biológico y proporcionar una salida también en formato biológico: procesadores que aprovechan la extensión de la Polimerasa, autómatas que funcionan con enzimas de restricción o con deoxiribozimas, circuitos de hibridación competitiva. Esta tesis presenta un conjunto de modelos de dispositivos de ácidos nucleicos escalables, sensibles al tiempo y energéticamente e�cientes, capaces de implementar diversas operaciones de computación lógica aprovechando el fenómeno de la hibridación competitiva del ADN. La capacidad implícita de estos dispositivos para aplicar reglas de inferencia como modus ponens, modus tollens, resolución o el silogismo hipotético tiene un gran potencial. Entre otras funciones, permiten representar implicaciones lógicas (o reglas del tipo SI/ENTONCES), como por ejemplo, �si se da el síntoma 1 y el síntoma 2, entonces estamos ante la enfermedad A�, o �si estamos ante la enfermedad B, entonces deben manifestarse los síntomas 2 y 3�. Utilizando estos módulos lógicos como bloques básicos de construcción, se pretende desarrollar sistemas in vitro basados en sensores de ADN, capaces de trabajar de manera conjunta para detectar un conjunto de síntomas de entrada y producir un diagnóstico de salida. La reciente publicación en la revista Science de un autómata biomolecular de diagnóstico, capaz de tratar las células cancerígenas sin afectar a las células sanas, es un buen ejemplo de la relevancia cientí�ca que este tipo de autómatas tienen en la actualidad. Además de las recién mencionadas aplicaciones en el diagnóstico in vitro, los modelos presentados también tienen utilidad en el diseño de biosensores inteligentes y la construcción de bases de datos con registros en formato biomolecular que faciliten el análisis genómico. El estudio sobre el estado de la cuestión en computación biomolecular que se presenta en esta tesis está basado en un artículo recientemente publicado en la revista Current Bioinformatics. Los nuevos dispositivos presentados en la tesis forman parte de una solicitud de patente de la que la UPM es titular, y han sido presentados en congresos internacionales como Unconventional Computation 2010 en Tokio o Synthetic Biology 2010 en París.
Resumo:
In recent years, challenged by the climate scenarios put forward by the IPCC and its potential impact on plant distribution, numerous predictive techniques -including the so called habitat suitability models (HSM)- have been developed. Yet, as the output of the different methods produces different distribution areas, developing validation tools are strong needs to reduce uncertainties. Focused in the Iberian Peninsula, we propose a palaeo-based method to increase the robustness of the HSM, by developing an ecological approach to understand the mismatches between the palaeoecological information and the projections of the HSMs. Here, we present the result of (1) investigating causal relationships between environmental variables and presence of Pinus sylvestris L. and P. nigra Arn. available from the 3rd Spanish Forest Inventory, (2) developing present and past presence-predictions through the MaxEnt model for 6 and 21 kyr BP, and (3) assessing these models through comparisons with biomized palaeoecological data available from the European Pollen Database for the Iberian Peninsula.
Resumo:
Se hace un estudio del monte de origen repoblación. Su especie principal es Pinus pinaster Ait., la secundaria es Pinus sylvestris L. y tiene presencia de Pinus nigra Arn. que no estaba prevista en el proyecto de repoblación, pero probablemente apareciera por mezcla de semillas. En los años 40 se cambió el uso del monte de agrícola a forestal, claro indicio de la baja productividad del suelo para el cultivo de cereales; de esta forma se dio a los propietarios de las distintas parcelas la oportunidad de incluir sus propiedades en el consorcio existente entre la entonces llamada Diputación Provincial de Madrid y Patrimonio Forestal del Estado, de manera que contarían con el apoyo tanto técnico como económico de la Administración Pública para la gestión del mismo. Es una observación totalmente objetiva que no es un monte económicamente rentable. Desde el punto de vista ambiental, el monte supone una masa protectora para la conservación de suelo. También cuenta con varios enclavados dedicados al pasto, que conlleva el paso de ganado vacuno y lanar, lo que supone un efecto negativo para el monte. Aunque el monte sigue siendo de propiedad particular por su cercanía a la población de Zarzalejo es frecuente el uso recreativo. Esto puede ser origen de conflictos para los propietarios ya que el tránsito de personas puede generar daños o requerir de mantenimientos que generen más gastos, en una propiedad que como ya hemos apuntado, es deficitaria. En conclusión podía sugerirse inversión en obras que mejoren el uso recreativo contando con ayuda económica por parte de alguna administración pública.
Resumo:
Introduction and motivation: A wide variety of organisms have developed in-ternal biomolecular clocks in order to adapt to cyclic changes of the environment. Clock operation involves genetic networks. These genetic networks have to be mod¬eled in order to understand the underlying mechanism of oscillations and to design new synthetic cellular clocks. This doctoral thesis has resulted in two contributions to the fields of genetic clocks and systems and synthetic biology, generally. The first contribution is a new genetic circuit model that exhibits an oscillatory behav¬ior through catalytic RNA molecules. The second and major contribution is a new genetic circuit model demonstrating that a repressor molecule acting on the positive feedback of a self-activating gene produces reliable oscillations. First contribution: A new model of a synthetic genetic oscillator based on a typical two-gene motif with one positive and one negative feedback loop is pre¬sented. The originality is that the repressor is a catalytic RNA molecule rather than a protein or a non-catalytic RNA molecule. This catalytic RNA is a ribozyme that acts post-transcriptionally by binding to and cleaving target mRNA molecules. This genetic clock involves just two genes, a mRNA and an activator protein, apart from the ribozyme. Parameter values that produce a circadian period in both determin¬istic and stochastic simulations have been chosen as an example of clock operation. The effects of the stochastic fluctuations are quantified by a period histogram and autocorrelation function. The conclusion is that catalytic RNA molecules can act as repressor proteins and simplify the design of genetic oscillators. Second and major contribution: It is demonstrated that a self-activating gene in conjunction with a simple negative interaction can easily produce robust matically validated. This model is comprised of two clearly distinct parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the oscillator dynamics are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this study is that a simple and usual negative interaction, such as degradation, se¬questration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. At the genetic level, this means that an explicit negative feedback loop is not necessary. Unlike many genetic oscillators, this model needs neither cooperative binding reactions nor the formation of protein multimers. Applications and future research directions: Recently, RNA molecules have been found to play many new catalytic roles. The first oscillatory genetic model proposed in this thesis uses ribozymes as repressor molecules. This could provide new synthetic biology design principles and a better understanding of cel¬lular clocks regulated by RNA molecules. The second genetic model proposed here involves only a repression acting on a self-activating gene and produces robust oscil¬lations. Unlike current two-gene oscillators, this model surprisingly does not require a second repressor gene. This result could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. Possible follow-on research directions are: validate models in vivo and in vitro, research the potential of second model as a genetic memory, investigate new genetic oscillators regulated by non-coding RNAs and design a biosensor of positive feedbacks in genetic networks based on the operation of the second model Resumen Introduccion y motivacion: Una amplia variedad de organismos han desarro-llado relojes biomoleculares internos con el fin de adaptarse a los cambios ciclicos del entorno. El funcionamiento de estos relojes involucra redes geneticas. El mo delado de estas redes geneticas es esencial tanto para entender los mecanismos que producen las oscilaciones como para diseiiar nuevos circuitos sinteticos en celulas. Esta tesis doctoral ha dado lugar a dos contribuciones dentro de los campos de los circuitos geneticos en particular, y biologia de sistemas y sintetica en general. La primera contribucion es un nuevo modelo de circuito genetico que muestra un comportamiento oscilatorio usando moleculas de ARN cataliticas. La segunda y principal contribucion es un nuevo modelo de circuito genetico que demuestra que una molecula represora actuando sobre el lazo de un gen auto-activado produce oscilaciones robustas. Primera contribucion: Es un nuevo modelo de oscilador genetico sintetico basado en una tipica red genetica compuesta por dos genes con dos lazos de retroa-limentacion, uno positivo y otro negativo. La novedad de este modelo es que el represor es una molecula de ARN catalftica, en lugar de una protefna o una molecula de ARN no-catalitica. Este ARN catalitico es una ribozima que actua despues de la transcription genetica uniendose y cortando moleculas de ARN mensajero (ARNm). Este reloj genetico involucra solo dos genes, un ARNm y una proteina activadora, aparte de la ribozima. Como ejemplo de funcionamiento, se han escogido valores de los parametros que producen oscilaciones con periodo circadiano (24 horas) tanto en simulaciones deterministas como estocasticas. El efecto de las fluctuaciones es-tocasticas ha sido cuantificado mediante un histograma del periodo y la función de auto-correlacion. La conclusion es que las moleculas de ARN con propiedades cataliticas pueden jugar el misnio papel que las protemas represoras, y por lo tanto, simplificar el diseno de los osciladores geneticos. Segunda y principal contribucion: Es un nuevo modelo de oscilador genetico que demuestra que un gen auto-activado junto con una simple interaction negativa puede producir oscilaciones robustas. Este modelo ha sido estudiado y validado matematicamente. El modelo esta compuesto de dos partes bien diferenciadas. La primera parte es un lazo de retroalimentacion positiva creado por una proteina que se une al promotor de su propio gen activando la transcription. La segunda parte es una interaction negativa en la que una molecula represora evita la union de la proteina con el promotor. Un estudio estocastico muestra que el sistema es robusto al ruido. Un estudio determinista muestra que la dinamica del sistema es debida principalmente a dos tipos de biomoleculas: la proteina, y el complejo formado por el represor y esta proteina. La conclusion principal de este estudio es que una simple y usual interaction negativa, tal como una degradation, un secuestro o una inhibition, actuando sobre el lazo de retroalimentacion positiva de un solo gen es una condition suficiente para producir oscilaciones robustas. Un gen es suficiente y el lazo de retroalimentacion positiva no necesita activar a un segundo gen represor, tal y como ocurre en los relojes actuales con dos genes. Esto significa que a nivel genetico un lazo de retroalimentacion negativa no es necesario de forma explicita. Ademas, este modelo no necesita reacciones cooperativas ni la formation de multimeros proteicos, al contrario que en muchos osciladores geneticos. Aplicaciones y futuras lineas de investigacion: En los liltimos anos, se han descubierto muchas moleculas de ARN con capacidad catalitica. El primer modelo de oscilador genetico propuesto en esta tesis usa ribozimas como moleculas repre¬soras. Esto podria proporcionar nuevos principios de diseno en biologia sintetica y una mejor comprension de los relojes celulares regulados por moleculas de ARN. El segundo modelo de oscilador genetico propuesto aqui involucra solo una represion actuando sobre un gen auto-activado y produce oscilaciones robustas. Sorprendente-mente, un segundo gen represor no es necesario al contrario que en los bien conocidos osciladores con dos genes. Este resultado podria ayudar a clarificar los principios de diseno de los relojes celulares naturales y constituir una nueva y eficiente he-rramienta para crear osciladores geneticos sinteticos. Algunas de las futuras lineas de investigation abiertas tras esta tesis son: (1) la validation in vivo e in vitro de ambos modelos, (2) el estudio del potential del segundo modelo como circuito base para la construction de una memoria genetica, (3) el estudio de nuevos osciladores geneticos regulados por ARN no codificante y, por ultimo, (4) el rediseno del se¬gundo modelo de oscilador genetico para su uso como biosensor capaz de detectar genes auto-activados en redes geneticas.
Resumo:
Light detection and ranging (LiDAR) technology is beginning to have an impact on agriculture. Canopy volume and/or fruit tree leaf area can be estimated using terrestrial laser sensors based on this technology. However, the use of these devices may have different options depending on the resolution and scanning mode. As a consequence, data accuracy and LiDAR derived parameters are affected by sensor configuration, and may vary according to vegetative characteristics of tree crops. Given this scenario, users and suppliers of these devices need to know how to use the sensor in each case. This paper presents a computer program to determine the best configuration, allowing simulation and evaluation of different LiDAR configurations in various tree structures (or training systems). The ultimate goal is to optimise the use of laser scanners in field operations. The software presented generates a virtual orchard, and then allows the scanning simulation with a laser sensor. Trees are created using a hidden Markov tree (HMT) model. Varying the foliar structure of the orchard the LiDAR simulation was applied to twenty different artificially created orchards with or without leaves from two positions (lateral and zenith). To validate the laser sensor configuration, leaf surface of simulated trees was compared with the parameters obtained by LiDAR measurements: the impacted leaf area, the impacted total area (leaves and wood), and th impacted area in the three outer layers of leaves.
Resumo:
SIMLIDAR is an application developed in Cþþ that generates an artificial orchard using a Lindenmayer system. The application simulates the lateral interaction between the artificial orchard and a laser scanner or LIDAR (Light Detection and Ranging). To best highlight the unique qualities of the LIDAR simulation, this work focuses on apple trees without leaves, i.e. the woody structure. The objective is to simulate a terrestrial laser sensor (LIDAR) when applied to different artificially created orchards and compare the simulated characteristics of trees with the parameters obtained with the LIDAR. The scanner is mounted on a virtual tractor and measures the distance between the origin of the laser beam and the nearby plant object. This measurement is taken with an angular scan in a plane which is perpendicular to the route of the virtual tractor. SIMLIDAR determines the distance measured in a bi-dimensional matrix N M, where N is the number of angular scans and M is the number of steps in the tractor route. In order to test the data and performance of SIMLIDAR, the simulation has been applied to 42 different artificial orchards. After previously defining and calculating two vegetative parameters (wood area and wood projected area) of the simulated trees, a good correlation (R2 ¼ 0.70e0.80) was found between these characteristics and the wood area detected (impacted) by the laser beam. The designed software can be valuable in horticulture for estimating biomass and optimising the pesticide treatments that are performed in winter.
Resumo:
La computación molecular es una disciplina que se ocupa del diseño e implementación de dispositivos para el procesamiento de información sobre un sustrato biológico, como el ácido desoxirribonucleico (ADN), el ácido ribonucleico (ARN) o las proteínas. Desde que Watson y Crick descubrieron en los años cincuenta la estructura molecular del ADN en forma de doble hélice, se desencadenaron otros descubrimientos, como las enzimas de restricción o la reacción en cadena de la polimerasa (PCR), contribuyendo de manera determinante a la irrupción de la tecnología del ADN recombinante. Gracias a esta tecnología y al descenso vertiginoso de los precios de secuenciación y síntesis del ADN, la computación biomolecular pudo abandonar su concepción puramente teórica. El trabajo presentado por Adleman (1994) logró resolver un problema de computación NP-completo (El Problema del Camino de Hamilton dirigido) utilizando únicamente moléculas de ADN. La gran capacidad de procesamiento en paralelo ofrecida por las técnicas del ADN recombinante permitió a Adleman ser capaz de resolver dicho problema en tiempo polinómico, aunque a costa de un consumo exponencial de moléculas de ADN. Utilizando algoritmos de fuerza bruta similares al utilizado por Adleman se logró resolver otros problemas NP-completos, como por ejemplo el de Satisfacibilidad de Fórmulas Lógicas / SAT (Lipton, 1995). Pronto se comprendió que la computación biomolecular no podía competir en velocidad ni precisión con los ordenadores de silicio, por lo que su enfoque y objetivos se centraron en la resolución de problemas con aplicación biomédica (Simmel, 2007), dejando de lado la resolución de problemas clásicos de computación. Desde entonces se han propuesto diversos modelos de dispositivos biomoleculares que, de forma autónoma (sin necesidad de un bio-ingeniero realizando operaciones de laboratorio), son capaces de procesar como entrada un sustrato biológico y proporcionar una salida también en formato biológico: procesadores que aprovechan la extensión de la polimerasa (Hagiya et al., 1997), autómatas que funcionan con enzimas de restricción (Benenson et al., 2001) o con deoxiribozimas (Stojanovic et al., 2002), o circuitos de hibridación competitiva (Yurke et al., 2000). Esta tesis presenta un conjunto de modelos de dispositivos de ácidos nucleicos capaces de implementar diversas operaciones de computación lógica aprovechando técnicas de computación biomolecular (hibridación competitiva del ADN y reacciones enzimáticas) con aplicaciones en diagnóstico genético. El primer conjunto de modelos, presentados en el Capítulo 5 y publicados en Sainz de Murieta and Rodríguez-Patón (2012b), Rodríguez-Patón et al. (2010a) y Sainz de Murieta and Rodríguez-Patón (2010), define un tipo de biosensor que usa hebras simples de ADN para codificar reglas sencillas, como por ejemplo "SI hebra-ADN-1 Y hebra-ADN-2 presentes, ENTONCES enfermedad-B". Estas reglas interactúan con señales de entrada (ADN o ARN de cualquier tipo) para producir una señal de salida (también en forma de ácido nucleico). Dicha señal de salida representa un diagnóstico, que puede medirse mediante partículas fluorescentes técnicas FRET) o incluso ser un tratamiento administrado en respuesta a un conjunto de síntomas. El modelo presentado en el Capítulo 5, publicado en Rodríguez-Patón et al. (2011), es capaz de ejecutar cadenas de resolución sobre fórmulas lógicas en forma normal conjuntiva. Cada cláusula de una fórmula se codifica en una molécula de ADN. Cada proposición p se codifica asignándole una hebra simple de ADN, y la correspondiente hebra complementaria a la proposición ¬p. Las cláusulas se codifican incluyendo distintas proposiciones en la misma hebra de ADN. El modelo permite ejecutar programas lógicos de cláusulas Horn aplicando múltiples iteraciones de resolución en cascada, con el fin de implementar la función de un nanodispositivo autónomo programable. Esta técnica también puede emplearse para resolver SAP sin ayuda externa. El modelo presentado en el Capítulo 6 se ha publicado en publicado en Sainz de Murieta and Rodríguez-Patón (2012c), y el modelo presentado en el Capítulo 7 se ha publicado en (Sainz de Murieta and Rodríguez-Patón, 2013c). Aunque explotan métodos de computación biomolecular diferentes (hibridación competitiva de ADN en el Capítulo 6 frente a reacciones enzimáticas en el 7), ambos modelos son capaces de realizar inferencia Bayesiana. Funcionan tomando hebras simples de ADN como entrada, representando la presencia o la ausencia de un indicador molecular concreto (una evidencia). La probabilidad a priori de una enfermedad, así como la probabilidad condicionada de una señal (o síntoma) dada la enfermedad representan la base de conocimiento, y se codifican combinando distintas moléculas de ADN y sus concentraciones relativas. Cuando las moléculas de entrada interaccionan con las de la base de conocimiento, se liberan dos clases de hebras de ADN, cuya proporción relativa representa la aplicación del teorema de Bayes: la probabilidad condicionada de la enfermedad dada la señal (o síntoma). Todos estos dispositivos pueden verse como elementos básicos que, combinados modularmente, permiten la implementación de sistemas in vitro a partir de sensores de ADN, capaces de percibir y procesar señales biológicas. Este tipo de autómatas tienen en la actualidad una gran potencial, además de una gran repercusión científica. Un perfecto ejemplo fue la publicación de (Xie et al., 2011) en Science, presentando un autómata biomolecular de diagnóstico capaz de activar selectivamente el proceso de apoptosis en células cancerígenas sin afectar a células sanas.
Resumo:
En la exposición Orígenes: Cinco hitos en la evolución humana, celebrada en Vielha (Valle de Arán) durante el verano de 2010, pudo leerse lo siguiente: «Hace unos 2,5 millones de años una especie de primate, que podría ser el primer representante del género humano (Homo habilis), destaca sobre las especies existentes.
Resumo:
La resistencia genética mediada por los genes R es uno de los sistemas de defensa de las plantas frente a patógenos y se activa una vez que los patógenos han superado la defensa basal que otorgan la cutícula y pared celular. Los mecanismos de resistencia genética se inician a su vez, por el reconocimiento de productos derivados de genes de avirulencia de los patógenos (avr) por parte de las proteínas R. Tanto la respuesta de defensa basal como la respuesta de defensa por genes R están influenciadas por patrones de regulación hormonal, que incluye a las principales hormonas vegetales ácido salicílico (SA), ácido jasmónico (JA) y etileno (ET). En tomate (Solanum lycopersicum) uno de los genes R es el gen MiG1, que confiere resistencia a nematodos formadores de nódulos (Meloidogyne javanica, M. incognita y M. arenaria). Uno de los eventos más importantes que caracterizan a la respuesta de resistencia es la reacción hipersensible (HR), que está mediada por la activación temprana de una serie de sistemas enzimáticos, entre los que destaca el de las peroxidasas (PRXs) Clase III. Su función es importante tanto para limitar el establecimiento y expansión del nematodo, al generar ambientes altamente tóxicos por su contribución en la producción masiva de ROS, como por su implicación en la síntesis y depósito de lignina generando barreras estructurales en el sitio de infección. Además de estos mecanismos de defensa asociados a la resistencia constitutiva, las plantas pueden desarrollar resistencia sistémica adquirida (SAR) que en la naturaleza ocurre, en ocasiones, en una fase posterior a que la planta haya sufrido el ataque de un patógeno. Así mismo hay diferentes productos de origen químico como el benzotiadiazol o BTH (ácido S-metil benzol-(1,2,3)-tiadiozole-7-carbónico ester) que pueden generar esta misma respuesta SAR. Como resultado, la planta adquiere resistencia sistémica frente a nuevos ataques de patógenos. En este contexto, el presente trabajo aborda en primer lugar el análisis comparativo, mediante microarrays de oligonucleótidos, de los transcriptomas de los sistemas radicales de plantas de tomate de 8 semanas de edad de dos variedades, una portadora del gen de resistencia MiG1 (Motelle) y otra carente del mismo y, por tanto, susceptible (Moneymaker), antes y después de la infección por M. javanica. Previo a la infección se observó que la expresión de un gran número de transcritos era más acusada en la variedad resistente que en la susceptible, entre ellos el propio gen MiG1 o los genes PrG1 (o P4), LEJA1 y ER24, lo que indica que, en ausencia de infección, las rutas hormonales del SA, JA y ET están más activas en la raíz de la variedad resistente. Por el contrario, un número mucho menor de transcritos presentaban su expresión más reducida en Motelle que en Moneymaker, destacando un gen de señalización para sintetizar la hormona giberelina (GA). La infección por M. javanica causa importantes cambios transcripcionales en todo el sistema radical que modifican sustancialmente las diferencias basales entre plantas Motelle y Moneymaker, incluida la sobreexpresión en la variedad resistente de los transcritos de MiG1, que se reduce parcialmente, mientras que las rutas hormonales del SA y el JA continuan más activas que en la susceptible (evidente por los genes PrG1 y LEJA1). Además, los cambios asociados a la infección del nematodo se evidencian por las grandes diferencias entre los dos tiempos post-infección considerados, de tal forma que en la fase temprana (2 dpi) de la interacción compatible predomina la sobreexpresión de genes de pared celular y en la tardía (12 dpi) los relacionados con el ARN. En el análisis de la interacción incompatible, aunque también hay muchas diferencias entre ambas fases, hay que destacar la expresión diferencial común de los genes loxA y mcpi (sobrexpresados) y del gen loxD (reprimido) por su implicación en defensa en otras interacciones planta-patógeno. Cabe destacar que entre las interacciones compatible e incompatible hubo muy pocos genes en común. En la etapa temprana de la interacción compatible destacó la activación de genes de pared celular y la represión de la señalización; en cambio, en la interacción incompatible hubo proteínas principalmente implicadas en defensa. A los 12 días, en la interacción compatible los genes relacionados con el ARN y la pared celular se sobreexpresaban principalmente, y se reprimían los de proteínas y transporte, mientras que en la incompatible se sobreexpresaron los relacionados con el estrés, el metabolismo secundario y el de hormonas y se reprimieron los de ARN, señalización, metabolismo de hormonas y proteínas. Por otra parte, la técnica de silenciamiento génico VIGS reveló que el gen TGA 1a está implicado en la resistencia mediada por el gen MiG1a M. javanica. Así mismo se evaluó el transcriptoma de todo el sistema radical de la variedad susceptible tras la aplicación del inductor BTH, y se comparó con el transcriptoma de la resistente. Los resultados obtenidos revelan que el tratamiento con BTH en hojas de Moneymaker ejerce notables cambios transcripcionales en la raíz; entre otros, la activación de factores de transcripción Myb (THM16 y THM 27) y del gen ACC oxidasa. Las respuestas inducidas por el BTH parecen ser de corta duración ya que no hubo transcritos diferenciales comunes a las dos fases temporales de la infección comparadas (2 y 12 dpi). El transcriptoma de Moneymaker tratada con BTH resultó ser muy diferente al de la variedad resistente Motelle, ambas sin infectar, destacando la mayor expresión en el primero del gen LeEXP2, una expansina relacionada con defensa frente a nematodos. Las respuestas inducidas por los nematodos en Moneymaker-BTH también fueron muy distintas a las observadas previamente en la interacción incompatible mediada por MiG1, pues sólo se detectaron 2 genes sobreexpresados comunes a ambos eventos. Finalmente, se abordó el estudio de la expresión diferencial de genes que codifican PRXs y su relación con la resistencia en la interacción tomate/M. javanica. Para ello, se realizó en primer lugar el estudio del análisis del transcriptoma de tomate de la interacción compatible, obtenido en un estudio previo a partir de tejido radical infectado en distintos tiempos de infección. Se han identificado 16 unigenes de PRXs con expresión diferencial de los cuales 15 se relacionan por primera vez con la respuesta a la infección de nematodos. La mayoría de los genes de PRXs identificados, 11, aparecen fuertemente reprimidos en el sitio de alimentación, en las células gigantes (CG). Dada la implicación directa de las PRXs en la activación del mecanismo de producción de ROS, la supresión de la expresión génica local de genes de PRXs en el sitio de establecimiento y alimentación pone de manifiesto la capacidad del nematodo para modular y superar la respuesta de defensa de la planta de tomate en la interacción compatible. Posteriormente, de estos genes identificados se han elegido 4: SGN-U143455, SGN-U143841 y SGN-U144042 reprimidos en el sitio de infección y SGN-U144671 inducido, cuyos cambios de expresión se han determinado mediante análisis por qRT-PCR y de hibridación in situ en dos tiempos de infección (2 dpi y 4 dpi) y en distintos tejidos radicales de tomate resistente y susceptible. Los patrones de expresión obtenidos demuestran que en la interacción incompatible la transcripción global de los 4 genes estudiados se dispara en la etapa más temprana en el sitio de infección, detectándose la localización in situ de transcritos en el citoplasma de las células corticales de la zona meristemática afectadas por el nematodo. A 4 dpi se observó que los niveles de expresión en el sitio de infección cambian de tendencia y los genes SGN-U144671 y SGN-U144042 se reprimen significativamente. Los diferentes perfiles de expresión de los genes PRXs en los dos tiempos de infección sugieren que su inducción en las primeras 48 horas es crucial para la respuesta de defensa relacionada con la resistencia frente a la invasión del nematodo. Por último, al analizar el tejido radical sistémico, se detectó una inducción significativa de la expresión en la fase más tardía de la infección del gen SGN-U144042 en el genotipo susceptible y del SGN-U143841 en ambos genotipos. En este estudio se describe por primera vez la inducción de la expresión sistémica de genes de PRXs en tomate durante la interacción compatible e incompatible con M. javanica lo que sugiere su posible implicación funcional en la respuesta de defensa SAR activada por la infección previa del nematodo. ABSTRACT Plants defend themselves from pathogens by constitutive and/or induced defenses. A common type of induced defense involves plant resistance genes (R), which are normally activated in response to attack by specific pathogen species. Typically, a specific plant R protein recognizes a specific pathogen avirulence (avr) compound. This initiates a complex biochemical cascade inside the plant that results in synthesis of antipathogen compounds. This response can involve chemical signaling, transcription, translation, enzymes and metabolism, and numerous plant hormones such as salicylic acid (SA), jasmonates (JA) and ethylene (ET). Induced plant defense can also activate Class III peroxidases (PRXs), which produce reactive oxygen species (ROS), regulate extracellular H2O2, and play additional roles in plant defense. R-gene activation and the resulting induced defense often remain localized in the specific tissues invaded by the plant pathogen. In other cases, the plant responds by signaling the entire plant to produce defense compounds (systemic induction). Plant defense can also be induced by the exogenous application of natural or synthetic elicitors, such as benzol-(1,2,3)-thiadiazole-7-carbothionic acid. There is much current scientific interest in R-genes and elicitors, because they might be manipulated to increase agricultural yield. Scientists also are interested in systemic induction, because this allows the entire plant to be defended. In this context, one of the aims of this investigation was the transcriptoma analysis of the root systems of two varieties of tomato, the resistant variety (Motelle) that carrier MiG1 and the susceptible (Moneymaker) without MiG1, before and after infection with M. javanica. The overexpression was more pronounced in the transcriptoma of the resistant variety compared with susceptible, before infection, including the MiG1 gene, PrG1 (or P4) genes, LEJA1 and ER24, indicating that hormone SA, JA and ET are active in the resistant variety. Moreover, GA hormone presents an opposite behavior. M. javanica infection causes significant transcriptional changes in both compatible (Moneymaker-M. javanica) and incompatible (Motelle-M. javanica) interaction. In the incompatible transcriptome root system, was notably reduced the expression of the MiG1 gene, and a continuity in the expression of the hormonal pathways of SA and JA. In other hand, transcriptional profile changes during compatible interaction were associated with nematode infection. The large differences between the two times point infection considered (2 dpi and 12 dpi) indicates an overexpression of cell wall related genes in the first phase, and conversely an overexpression of RNA genes in the late phase. Transcriptoma analysis of incompatible interaction, although there were differences between the two phases, should be highlighted the common differential gene expression: loxA and mcpi (overexpressed) and loxD gene (suppressed), as they are involved in defenses in other plant-pathogen interactions. The VIGS tool has provided evidence that TGA 1a is involved in MiG1 mediated resistance to M. javanica. Likewise, the systemic application of BTH was assessed and compared with susceptible and resistant variety. Root system transcriptoma of BTH treatment on leaves showed the activation of Myb transcription factors (THM16 and THM27), the ACC oxidase gene. and the LeEXP2 gene, encoding for an expansin enzyme, related with defense against nematodes. The activation appears to be reduced by subsequent infection and establishment of nematodes. To assist in elucidate the role of tomato PRXs in plant defence against M. javanica, the transcriptome obtained previously from isolated giant cells (GC) and galls at 3 and 7 dpi from the compatible interaction was analysed. A total of 18 different probes corresponding to 16 PRX encoding genes were differentially expressed in infection site compared to the control uninfected root tissues. Most part of them (11) was down-regulated. These results yielded a first insight on 15 of the PRX genes responding to tomato–Meloidogyne interaction and confirm that repression of PRX genes might be crucial for feeding site formation at the initial stages of infection. To study the involvement of PRX genes in resistance response, four genes have been selected: SGN-U143455, SGN-U143841 and SGN-U144042 consistently down-regulated and SGN-U144671 consistently up-regulated at infection site in compatible interaction. The expression changes were determined by qRT-PCR and in situ location at 2 dpi and 4 dpi, and in different root tissues of resistant and susceptible plants. Early upon infection (2 dpi), the transcripts levels of the four genes were strongly increased in infected tissue of resistant genotype. In situ hybridization showed transcript accumulation of them in meristem cortical cells, where the nematode made injury. The results obtained provide strong evidence that early induction of PRX genes is important for defence response of the resistance against nematode invasion. Moreover, the induction patterns of SGN-U144042 gene observed at 4 dpi in distal noninfected root tissue into the susceptible genotype and of SGN-U143841 gene in both genotypes suggest a potential involvement of PRX in the systemic defence response.