2 resultados para APPLIED PROBABILITY
em Universidad Politécnica de Madrid
Resumo:
La comparación de las diferentes ofertas presentadas en la licitación de un proyecto,con el sistema de contratación tradicional de medición abierta y precio unitario cerrado, requiere herramientas de análisis que sean capaces de discriminar propuestas que teniendo un importe global parecido pueden presentar un impacto económico muy diferente durante la ejecución. Una de las situaciones que no se detecta fácilmente con los métodos tradicionales es el comportamiento del coste real frente a las variaciones de las cantidades realmente ejecutadas en obra respecto de las estimadas en el proyecto. Este texto propone abordar esta situación mediante un sistema de análisis cuantitativo del riesgo como el método de Montecarlo. Este procedimiento, como es sabido, consiste en permitir que los datos de entrada que definen el problema varíen unas funciones de probabilidad definidas, generar un gran número de casos de prueba y tratar los resultados estadísticamente para obtener los valores finales más probables,con los parámetros necesarios para medir la fiabilidad de la estimación. Se presenta un modelo para la comparación de ofertas, desarrollado de manera que puede aplicarse en casos reales aplicando a los datos conocidos unas condiciones de variación que sean fáciles de establecer por los profesionales que realizan estas tareas. ABSTRACT: The comparison of the different bids in the tender for a project, with the traditional contract system based on unit rates open to and re-measurement, requires analysis tools that are able to discriminate proposals having a similar overall economic impact, but that might show a very different behaviour during the execution of the works. One situation not easily detected by traditional methods is the reaction of the actual cost to the changes in the exact quantity of works finally executed respect of the work estimated in the project. This paper intends to address this situation through the Monte Carlo method, a system of quantitative risk analysis. This procedure, as is known, is allows the input data defining the problem to vary some within well defined probability functions, generating a large number of test cases, the results being statistically treated to obtain the most probable final values, with the rest of the parameters needed to measure the reliability of the estimate. We present a model for the comparison of bids, designed in a way that it can be applied in real cases, based on data and assumptions that are easy to understand and set up by professionals who wish to perform these tasks.
Resumo:
The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations