2 resultados para APCs
em Universidad Politécnica de Madrid
Resumo:
In this paper some topics related to the design of reinforced concrete (RC) shells are addressed. The influence of the reinforcement layout on the service and ultimate behavior of the shell structure is commented. The well established methodology for dimensioning and verifying RC sections of beam structures is extended. In this way it is possible to treat within a unified procedure the design and verification of RC two dimensional structures, in particular membrane and shell structures. Realistic design situations as multiple steel farnilies and non orthogonal reinforcement layout can be handled. Finally, some examples and applications of the proposed methodology are presented.
Resumo:
In this article, a model for the determination of displacements, deformations and tensions of a submarine pipeline during the construction is presented. The process is carried out from an initial floating situation to the final laying position on the seabed. The existence of currents and small waves are also considered. Firstly, this technique, usually applied to polyethylene pipelines, is described in this paper as well as some real world examples, as well as the variables that can be modified to control the behavior of the structure. A detailed description of the actions in this process is considered, specially the ones related to marine environment, as Archimedes force, current and sea waves. The behavior of the pipeline is modeled with a non linear elasto dynamic model where geometric non linearities are taken into account. A 3-D beam model, without cross section deformation effects, is developed. Special care is taken in the numerical analysis, developed within an updated lagrangian formulation framework, with the sea bed contact, the follower forces due to the external water pressures and the dynamic actions. Finally, some subroutines are implemented into ANSYS to simulate the two dimensional case, where the whole construction process is achieved. With this software, a sensibility analysis of the bending moments, axial forces and stresses obtained with different values of the control variables in order to optimize the construction steps. These control variables are, the axial load in the pipe, the inundated inner length and the distance of the control barge from the coast.