3 resultados para ANTERIOR CINGULATE CORTEX

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies of patients with temporal lobe epilepsy provide few descriptions of seizures that arise in the temporopolar and the anterior temporobasal brain region. Based on connectivity, it might be assumed that the semiology of these seizures is similar to that of medial temporal lobe epilepsy. However, accumulating evidence suggests that the anterior temporobasal cortex may play an important role in the language system, which could account for particular features of seizures arising here. We studied the electroclinical features of seizures in patients with circumscribed temporopolar and temporobasal lesions in order to identify specific features that might differentiate them from seizures that originate in other temporal areas. Among 172 patients with temporal lobe seizures registered in our epilepsy unit in the last 15 years, 15 (8.7%) patients had seizures caused by temporopolar or anterior temporobasal lesions (11 left-sided lesions). The main finding in our study is that patients with left-sided lesions had aphasia during their seizures as the most prominent feature. In addition, while all patients showed normal to high intellectual functioning in standard neuropsychological testing, semantic impairment was found in a subset of 9 patients with left-sided lesions. This case series demonstrates that aphasic seizures without impairment of consciousness can result from small, circumscribed left anterior temporobasal and temporopolar lesions. Thus, the presence of speech manifestation during seizures should prompt detailed assessment of the structural integrity of the basal surface of the temporal lobe in addition to the evaluation of primary language areas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell’s dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell?s dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed ?500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits.