4 resultados para ANALYTIC-FUNCTIONS
em Universidad Politécnica de Madrid
Resumo:
In this paper we prove several results on the existence of analytic functions on an infinite dimensional real Banach space which are bounded on some given collection of open sets and unbounded on others. In addition, we also obtain results on the density of some subsets of the space of all analytic functions for natural locally convex topologies on this space. RESUMEN. Los autores demuestran varios resultados de existencia de funciones analíticas en espacios de Banach reales de dimensión infinita que están acotadas en un colección de subconjuntos abiertos y no acotadas en los conjuntos de otra colección. Además, se demuestra la densidad de ciertos subconjuntos de funciones analíticas para varias topologías localmente convexas.
Resumo:
The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established.
Resumo:
The selection of predefined analytic grids (partitions of the numeric ranges) to represent input and output functions as histograms has been proposed as a mechanism of approximation in order to control the tradeoff between accuracy and computation times in several áreas ranging from simulation to constraint solving. In particular, the application of interval methods for probabilistic function characterization has been shown to have advantages over other methods based on the simulation of random samples. However, standard interval arithmetic has always been used for the computation steps. In this paper, we introduce an alternative approximate arithmetic aimed at controlling the cost of the interval operations. Its distinctive feature is that grids are taken into account by the operators. We apply the technique in the context of probability density functions in order to improve the accuracy of the probability estimates. Results show that this approach has advantages over existing approaches in some particular situations, although computation times tend to increase significantly when analyzing large functions.
Resumo:
We characterize the region of meromorphic continuation of an analytic function ff in terms of the geometric rate of convergence on a compact set of sequences of multi-point rational interpolants of ff. The rational approximants have a bounded number of poles and the distribution of interpolation points is arbitrary.