18 resultados para AMORPHOUS-SILICON-NITRIDE

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon thin films were deposited using a high pressure sputtering (HPS) system. In this work, we have studied the composition and optical properties of the films (band-gap, absorption coefficient), and their dependence with the deposition parameters. For films deposited at high pressure (1 mbar), composition measurements show a critical dependence of the purity of the films with the RF power. Films manufactured with RF-power above 80W exhibit good properties for future application, similar to the films deposited by CVD (Chemical Vapor Deposition) for hydrogenated amorphous silicon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we study the optimization of laser-fired contact (LFC) processing parameters, namely laser power and number of pulses, based on the electrical resistance measurement of an aluminum single LFC point. LFC process has been made through four passivation layers that are typically used in c-Si and mc-Si solar cell fabrication: thermally grown silicon oxide (SiO2), deposited phosphorus-doped amorphous silicon carbide (a-SiCx/H(n)), aluminum oxide (Al2O3) and silicon nitride (SiNx/H) films. Values for the LFC resistance normalized by the laser spot area in the range of 0.65–3 mΩ cm2 have been obtained

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work describes the structural and piezoelectric assessment of aluminum nitride (AlN) thin films deposited by pulsed-DC reactive sputtering on insulating substrates. We investigate the effect of different insulating seed layers on AlN properties (crystallinity, residual stress and piezoelectric activity). The seed layers investigated, silicon nitride (Si3N4), silicon dioxide (SiO2), amorphous tantalum oxide (Ta2O5), and amorphous or nano-crystalline titanium oxide (TiO2) are deposited on glass plates to a thickness lower than 100 nm. Before AlN films deposition, their surface is pre-treated with a soft ionic cleaning, either with argon or nitrogen ions. Only AlN films grown of TiO2 seed layers exhibit a significant piezoelectric activity to be used in acoustic device applications. Pure c-axis oriented films, with FWHM of rocking curve of 6º, stress below 500 MPa, and electromechanical coupling factors measured in SAW devices of 1.25% are obtained. The best AlN films are achieved on amorphous TiO2 seed layers deposited at high target power and low sputtering pressure. On the other hand, AlN films deposited on Si3N4, SiO2 and TaOx exhibit a mixed orientation, high stress and very low piezoelectric activity, which invalidate their use in acoustic devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the key steps to achieve high efficiencies in amorphous/crystalline silicon photovoltaic structures is to design low-ohmic-resistance backcontacts with good passivation in the rear part of the cell. A well known approach to achieve this goal is to use laser-fired contact (LFC) processes in which a metal layer is fired through the dielectric to define good contacts with the semiconductor. However, and despite the fact that this approach has demonstrated to be extremely successful, there is still enough room for process improvement with an appropriate optimization. In this paper, a study focused on the optimal adjustment of the irradiation parameters to produce laser-fired contacts in a-Si:H/c-Si heterojunctionsolarcells is presented. We used samples consisting of crystalline-silicon (c-Si) wafers together with a passivation layer of intrinsic hydrogenated amorphous silicon (a-Si:H(i)) deposited by plasma-enhanced chemical deposition (PECVD). Then, an aluminum layer was evaporated on both sides, the thickness of this layer varied from 0.2 to 1 μm in order to identify the optimal amount of Al required to create an appropriate contact. A q-switched Nd:YVO4laser source, λ = 532 nm, was used to locally fire the aluminum through the thin a-Si:H(i)-layers to form the LFC. The effects of laser fluences were analyzed using a comprehensive morphological and electrical characterization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The usage of more inexpensive silicon feedstock for crystallizing mc-Si blocks promises cost reduction for the photovoltaic market. For example, less expensive substrates of upgraded metallurgical silicon (UMG-Si) are used as a mechanical support for the epitaxial solar cell. This feedstock has higher content of impurities which influences cell performance and mechanical strength of the wafers. Thus, it is of importance to know these effects in order to know which impurities should be preferentially removed or prevented during the crystallization process. Metals like aluminum (Al) can decrease the mechanical strength due to micro-cracking of the silicon matrix and introduction of high values of thermal residual stress. Additionally, silicon oxide (SiOx) lowers the mechanical strength of mc-Si due to thermal residual stresses and stress intensification when an external load is applied in the surrounding of the particle. Silicon carbide (SiC) introduces thermal residual stresses and intensifies slightly the stress in the surrounding of the particle but can have a toughening effect on the silicon matrix. Finally, silicon nitride (Si3N4) does not influence significantly the mechanical strength of mc- Si and can have a toughening effect on the silicon matrix.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this research is the mechanical characterisation of multicrystalline silicon crystallised from silicon feedstock with a high content of aluminium for photovoltaic applications. The mechanical strength, fracture toughness and elastic modulus were measured at different positions within the multicrystalline silicon block to quantify the impact of the segregation of impurities on these mechanical properties. Aluminium segregated to the top of the block and caused extensive micro-cracking of the silicon matrix due to the thermal mismatch between silicon and the aluminium inclusions. Silicon nitride inclusions reduced the fracture toughness and caused failure by radial cracking in its surroundings due to its thermal mismatch with silicon. However, silicon carbide increased the fracture toughness and elastic modulus of silicon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this research is to characterise the mechanical properties of multicrystalline silicon for photovoltaic applications that was crystallised from silicon feedstock with a high content of several types of impurities. The mechanical strength, fracture toughness and elastic modulus were measured at different positions within a multicrystalline silicon block to quantify the effect of impurity segregation on these mechanical properties. The microstructure and fracture surfaces of the samples was exhaustively analysed with a scanning electron microscope in order to correlate the values of mechanical properties with material microstructure. Fracture stresses values were treated statistically via the Weibull statistics. The results of this research show that metals segregate to the top of the block, produce moderate microcracking and introduce high thermal stresses. Silicon oxide is produced at the bottom part of the silicon block, and its presence significantly reduces the mechanical strength and fracture toughness of multicrystalline silicon due to both thermal and elastic mismatch between silicon and the silicon oxide inclusions. Silicon carbide inclusions from the upper parts of the block increase the fracture toughness and elastic modulus of multicrystalline silicon. Additionally, the mechanical strength of multicrystalline silicon can increase when the radius of the silicon carbide inclusions is smaller than ~10 µm. The most damaging type of impurity inclusion for the multicrystalline silicon block studied in this work was amorphous silicon oxide. The oriented precipitation of silicon oxide at grain and twin boundaries eases the formation of radial cracks between inclusions and decreases significatively the mechanical strength of multicrystalline silicon. The second most influencing type of impurity inclusions were metals like aluminium and copper, that cause spontaneous microcracking in their surroundings after the crystallisation process, therefore reducing the mechanical response of multicrystalline silicon. Therefore, solar cell producers should pay attention to the content of metals and oxygen within the silicon feedstock in order to produce solar cells with reliable mechanical properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This doctoral thesis explores some of the possibilities that near-field optics can bring to photovoltaics, and in particular to quantum-dot intermediate band solar cells (QD-IBSCs). Our main focus is the analytical optimization of the electric field distribution produced in the vicinity of single scattering particles, in order to produce the highest possible absorption enhancement in the photovoltaic medium in their surroundings. Near-field scattering structures have also been fabricated in laboratory, allowing the application of the previously studied theoretical concepts to real devices. We start by looking into the electrostatic scattering regime, which is only applicable to sub-wavelength sized particles. In this regime it was found that metallic nano-spheroids can produce absorption enhancements of about two orders of magnitude on the material in their vicinity, due to their strong plasmonic resonance. The frequency of such resonance can be tuned with the shape of the particles, allowing us to match it with the optimal transition energies of the intermediate band material. Since these metallic nanoparticles (MNPs) are to be inserted inside the cell photovoltaic medium, they should be coated by a thin insulating layer to prevent electron-hole recombination at their surface. This analysis is then generalized, using an analytical separation-of-variables method implemented in Mathematica7.0, to compute scattering by spheroids of any size and material. This code allowed the study of the scattering properties of wavelengthsized particles (mesoscopic regime), and it was verified that in this regime dielectric spheroids perform better than metallic. The light intensity scattered from such dielectric spheroids can have more than two orders of magnitude than the incident intensity, and the focal region in front of the particle can be shaped in several ways by changing the particle geometry and/or material. Experimental work was also performed in this PhD to implement in practice the concepts studied in the analysis of sub-wavelength MNPs. A wet-coating method was developed to self-assemble regular arrays of colloidal MNPs on the surface of several materials, such as silicon wafers, amorphous silicon films, gallium arsenide and glass. A series of thermal and chemical tests have been performed showing what treatments the nanoparticles can withstand for their embedment in a photovoltaic medium. MNPs arrays are then inserted in an amorphous silicon medium to study the effect of their plasmonic near-field enhancement on the absorption spectrum of the material. The self-assembled arrays of MNPs constructed in these experiments inspired a new strategy for fabricating IBSCs using colloidal quantum dots (CQDs). Such CQDs can be deposited in self-assembled monolayers, using procedures similar to those developed for the patterning of colloidal MNPs. The use of CQDs to form the intermediate band presents several important practical and physical advantages relative to the conventional dots epitaxially grown by the Stranski-Krastanov method. Besides, this provides a fast and inexpensive method for patterning binary arrays of QDs and MNPs, envisioned in the theoretical part of this thesis, in which the MNPs act as antennas focusing the light in the QDs and therefore boosting their absorption

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied a series of square lattice antidot arrays, with diameter and lattice parameter from hundreds of nanometers to some microns, fabricated using two lithography techniques in epitaxial Fe(001) films. The coercivity increase of each array with respect to its base film can be scaled to a simple geometric parameter, irrespective of the lithography technique employed. Magnetic transmission x-ray microscopy studies, in arrays fabricated on polycrystalline Fe films deposited on silicon nitride membranes, evidenced the propagation of reversed domains from the edges of the arrays, in agreement with the coercivity analysis of the epitaxial arrays and with micromagnetic models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resumen En la última década la tecnología láser se ha convertido en una herramienta imprescindible en la fabricación de dispositivos fotovoltaicos, muy especial¬mente en aquellos basados en tecnología de lámina delgada. Independiente¬mente de crisis coyunturales en el sector, la evolución en los próximos años de estas tecnologías seguirá aprovechándose de la flexibilidad y calidad de proceso de la herramienta láser para la consecución de los dos objetivos básicos que harán de la fotovoltaica una opción energética económicamente viable: la reducción de costes de fabricación y el aumento de eficiencia de los dispositivos. Dentro de las tecnologías fotovoltaicas de lámina delgada, la tecnología de dispositivos basados en silicio amorfo ha tenido un gran desarrollo en sistemas estándar en configuración de superestrato, pero su limitada efi¬ciencia hace que su supervivencia futura pase por el desarrollo de formatos en configuración de substrato sobre materiales flexibles de bajo coste. En esta aproximación, las soluciones industriales basadas en láser actualmente disponibles para la interconexión monolítica de dispositivos no son aplica¬bles, y desde hace años se viene investigando en la búsqueda de soluciones apropiadas para el desarrollo de dichos procesos de interconexión de forma que sean transferibles a la industria. En este contexto, esta Tesis propone una aproximación completamente orig¬inal, demostrando la posibilidad de ejecutar una interconexión completa de estos dispositivos irradiando por el lado de la lámina (es decir de forma com¬patible con la opción de configuración de substrato y, valga la redundancia, con el substrato del dispositivo opaco), y con fuentes láser emitiendo en UV. Este resultado, obtenido por primera vez a nivel internacional con este trabajo, aporta un conocimiento revelador del verdadero potencial de estas fuentes en el desarrollo industrial futuro de estas tecnologías. Si bien muy posiblemente la solución industrial final requiera de una solución mixta con el empleo de fuentes en UV y, posiblemente, en otras longitudes de onda, esta Tesis y su planteamiento novedoso aportan un conocimiento de gran valor a la comunidad internacional por la originalidad del planteamiento seguido, los resultados parciales encontrados en su desarrollo (un número importante de los cuales han aparecido en revistas del JCR que recogen en la actualidad un número muy significativo de citas) y porque saca además a la luz, con las consideraciones físicas pertinentes, las limitaciones intrínsecas que el desarrollo de procesos de ablación directa selectiva con láseres UV en parte de los materiales utilizados presenta en el rango temporal de in¬teracción de ns y ps. En este trabajo se han desarrollado y optimizado los tres pasos estándar de interconexión (los habitualmente denominados Pl, P2 y P3 en la industria fotovoltaica) demostrando las ventajas y limitaciones del uso de fuentes en UV tanto con ancho temporal de ns como de ps. En particular destaca, por el éxito en los resultados obtenidos, el estudio de procesos de ablación selectiva de óxidos conductores transparentes (en este trabajo utilizados tanto como contacto frontal así como posterior en los módulos) que ha generado resultados, de excelente acogida científica a nivel internacional, cuya aplicación trasciende el ámbito de las tecnologías de silicio amorfo en lámina delgada. Además en este trabajo de Tesis, en el desarrollo del objetivo citado, se han puesto a punto técnicas de análisis de los procesos láser, basadas en métodos avanzados de caracterización de materiales (como el uso combi¬nado de la espectroscopia dispersiva de rayos X y la microscopía confocal de barrido) que se presentan como auténticos avances en el desarrollo de técnicas específicas de caracterización para el estudio de los procesos con láser de ablación selectiva de materiales en lámina delgada, procesos que no solo tienen impacto en el ámbito de la fotovoltaica, sino también en la microelectrónica, la biotecnología, la microfabricación, etc. Como resultado adicional, parte de los resultados de este trabajo, han sido aplicados exi¬tosamente por el grupo de investigaci´on en la que la autora desarrolla su labor para conseguir desarrollar procesos de enorme inter´es en otras tec-nolog´ıas fotovoltaicas, como las tecnolog´ıas est´andar de silicio amorfo sobre vidrio en configuraci´on de superestrato o el procesado de capas delgadas en tecnolog´ıas convencionales de silicio cristalino. Por u´ltimo decir que este trabajo ha sido posible por una colaboraci´on muy estrecha entre el Centro L´aser de la UPM, en el que la autora de¬sarrolla su labor, y el Grupo de Silicio Depositado del Centro de Inves¬tigaciones Energ´eticas, Medioambientales y Tecnol´ogicas, CIEMAT, que, junto al Grupo de Energ´ıa Fotovoltaica de la Universidad de Barcelona, han preparado la mayor parte de las muestras utilizadas en este estudio. Dichas colaboraciones se han desarrollado en el marco de varios proyectos de investigaci´on aplicada con subvenci´on pu´blica, tales como el proyecto singular estrat´egico PSE-MICROSIL08 (PSE-120000-2006-6), el proyecto INNDISOL (IPT-420000-2010-6), ambos financiados porel Fondo Europeo de Desarrollo Regional FEDER (UE) ”Una manera de hacer Europa y el MICINN, y los proyectos de Plan Nacional AMIC (ENE2010-21384-C04-´ 02) y CLASICO (ENE2007-6772-C04-04), cuya financiaci´on ha permitido en gran parte llevar a t´ermino este trabajo Abstract In the last decade, the laser technology has turned into an indispensable tool in the production of photovoltaic devices, especially of those based on thin film technology. Regardless the current crisis in the sector, the evolution of these technologies in the upcoming years will keep taking advantage of the flexibility and process quality of the laser tool for the accomplishment of the two basic goals that will convert the photovoltaic energy into economically viable: the manufacture cost reduction and the increase in the efficiency of the devices. Amongst the thin film laser technologies, the technology of devices based on amorphous silicon has had a great development in standard systems of superstrate configuration, but its limited efficiency makes its survival de¬pendant on the development of formats in substrate configuration with low cost flexible materials. In this approach, the laser industrial solutions cur¬rently available for the monolithic interconnection are not applicable, and in the last few years the investigations have been focused on the search of appropriate solutions for the development of such interconnection processes in a way that the same are transferable to the industry. In this context, this Thesis proposes a totally original approach, proving the possibility of executing a full interconnection of these devices by means of irradiation from the film side, i.e., compatible with the substrate con¬figuration, and with UV laser sources. This result, obtained for the first time at international level in this work, provides a revealing knowledge of the true potential of these sources in the future industrial development of these technologies. Even though very probably the final industrial solution will require a combination of the use of UV sources along with other wave¬lengths, this Thesis and its novel approach contribute with a high value to the international community because of the originality of the approach, the partial results found throughout its development (out of which, a large number has appeared in JCR journals that currently accumulate a signifi¬cant number of citations) and brings to light, with the pertinent scientific considerations, the intrinsic limitations that the selective direct ablation processes with UV laser present in the temporal range of interaction of ns and ps for part of the materials used in this study. More particularly, the three standard steps of interconnection (usually de¬nominated P1, P2 and P3 in the photovoltaic industry) have been developed and optimized, showing the advantages as well as the limitations of the use of UV sources in both the ns and ps pulse-width ranges. It is highly remark¬able, because of the success in the obtained results, the study of selective ablation processes in transparent conductive oxide (in this work used as a front and back contact), that has generated results, of excellent interna¬tional scientific reception, whose applications go beyond the scope of thin film photovoltaic technologies based on amorphous silicon. Moreover, in this Thesis, with the development of the mentioned goal, differ¬ent techniques of analysis of laser processes have been fine-tuned, basing the same in advanced methods for material characterization (like the combined use of EDX Analysis and Confocal Laser Scanning Microscopy) that can be presented as true breakthroughs in the development of specific techniques for characterization in the study of laser processes of selective ablation of materials in thin film technologies, processes that not only have impact in the photovoltaic field, but also in those of microelectronics, biotechnology, micro-fabrication, etc. As an additional outcome, part of the results of this work has been suc¬cessfully applied, by the investigation group to which the author belongs, to the development of processes of enormous interest within other photo¬voltaic technologies, such as the standard technologies on amorphous silicon over glass in superstrate configuration or the processing of thin layers in conventional technologies using crystalline silicon. Lastly, it is important to mention that this work has been possible thanks to the close cooperation between the Centro L´aser of the UPM, in which the author develops her work, and the Grupo de Silicio Depositado of Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol´ogicas, CIEMAT, which, along with the Grupo de Energ´ıa Fotovoltaica of Univer¬sidad de Barcelona, has prepared the largest part of the samples utilized in this study. Such collaborations have been carried out in the context of several projects of applied investigation with public funding, like Proyecto Singular Estrat´egico PSE-MICROSIL08 (PSE-120000-2006-6), Proyecto IN-NDISOL (IPT-420000-2010-6), both funded by the European Regional De¬velopment Fund (ERDF), ”Una manera de hacer Europa” and MICINN, and the projects of Plan Nacional AMIC (ENE2010-21384-C04-02) and ´ CLASICO (ENE2007-6772-C04-04), whose funds have enabled the devel-opment of large part of this work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of power and time conditions of in situ N2 plasma treatment, prior to silicon nitride (SiN) passivation, were investigated on an AlGaN/GaN high-electron mobility transistor (HEMT). These studies reveal that N2 plasma power is a critical parameter to control the SiN/AlGaN interface quality, which directly affects the 2-D electron gas density. Significant enhancement in the HEMT characteristics was observed by using a low power N2 plasma pretreatment. In contrast, a marked gradual reduction in the maximum drain-source current density (IDS max) and maximum transconductance (gm max), as well as in fT and fmax, was observed as the N2 plasma power increases (up to 40% decrease for 210 W). Different mechanisms were proposed to be dominant as a function of the discharge power range. A good correlation was observed between the device electrical characteristics and the surface assessment by atomic force microscopy and Kelvin force microscopy techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude. In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance. The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon thin films were deposited using a high pressure sputtering (HPS) system. In this work, we have studied the composition and optical properties of the films (band-gap, absorption coefficient), and their dependence with the deposition parameters. For films deposited at high pressure (1 mbar), composition measurements show a critical dependence of the purity of the films with the RF power. Films manufactured with RF-power above 80W exhibit good properties for future application, similar to the films deposited by CVD (Chemical Vapor Deposition) for hydrogenated amorphous silicon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crystallization and grain growth technique of thin film silicon are among the most promising methods for improving efficiency and lowering cost of solar cells. A major advantage of laser crystallization and annealing over conventional heating methods is its ability to limit rapid heating and cooling to thin surface layers. Laser energy is used to heat the amorphous silicon thin film, melting it and changing the microstructure to polycrystalline silicon (poly-Si) as it cools. Depending on the laser density, the vaporization temperature can be reached at the center of the irradiated area. In these cases ablation effects are expected and the annealing process becomes ineffective. The heating process in the a-Si thin film is governed by the general heat transfer equation. The two dimensional non-linear heat transfer equation with a moving heat source is solve numerically using the finite element method (FEM), particularly COMSOL Multiphysics. The numerical model help to establish the density and the process speed range needed to assure the melting and crystallization without damage or ablation of the silicon surface. The samples of a-Si obtained by physical vapour deposition were irradiated with a cw-green laser source (Millennia Prime from Newport-Spectra) that delivers up to 15 W of average power. The morphology of the irradiated area was characterized by confocal laser scanning microscopy (Leica DCM3D) and Scanning Electron Microscopy (SEM Hitachi 3000N). The structural properties were studied by micro-Raman spectroscopy (Renishaw, inVia Raman microscope).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tesis se centra en el estudio de una secuencia de procesos basados en la tecnología láser y ejecutados en dispositivos fotovoltaicos, que son imprescindibles para el desarrollo en general de las tecnologías fotovoltaicas basadas en lámina delgada y, en particular, de aquellas que utilizan silicio amorfo como absorbente, así como en aplicaciones posteriores de estas tecnologías de alto valor añadido como es la integración arquitectónica de este tipo de dispositivos. En gran parte de las tecnologías FV de lámina delgada, y muy particularmente en la de silicio amorfo, el material se deposita sobre un substrato en un área lo suficientemente grande para que se requiera de un proceso de subdivisión del dispositivo en células de tamaño adecuado, y su posterior conexión en serie para garantizar las figuras eléctricas nominales del dispositivo. Este proceso se ha desarrollado industrialmente hace años, pero no ha habido un esfuerzo científico asociado que permitiera conocer en profundidad los efectos que los procesos en si mismos tiene de forma individualizada sobre los materiales que componen el dispositivo y sus características finales. Este trabajo, desarrollado durante años en el Centro Láser de la UPM, en estrecha colaboración con Centro de Investigaciones Energéticas y Medioambientales (CIEMAT), la Universidad de Barcelona (UB), y la Universidad Politécnica de Cataluña (UPC), se centra justamente en un estudio detallado de dichos procesos, denominados habitualmente P1, P2, P3 y P4 atendiendo al orden en el que se realizan en el dispositivo. Este estudio incluye tanto la parametrización de los procesos, el análisis del efecto que los mismos producen sobre los materiales que componen el dispositivo y su comportamiento fotoeléctrico final, así como la evaluación del potencial uso de fuentes láser de última generación (ultrarrápidas) frente al estándar industrial en la actualidad que es el empleo de fuentes láser convencionales de ancho temporal en el rango de los nanosegundos. En concreto se ha estudiado en detalle las ventajas y limitaciones del uso de sistemas con diferentes rangos espectrales (IR, VIS y UV) y temporales (nanosegundos y picosegundos) para diferentes tipos de configuraciones y disposiciones tecnológicas (entendiendo por estas las habituales configuraciones en substrato y superestrato de este tipo de dispositivos). La caracterización individual de los procesos fue realizada primeramente en células de laboratorio específicamente diseñadas, abriendo nuevos planteamientos y conceptos originales para la mejora de los procesos láser de interconexión y posibilitando el empleo y desarrollo de técnicas y métodos avanzados de caracterización para el estudio de los procesos de ablación en las distintas láminas que conforman la estructura de los dispositivos fotovoltaicos, por lo que se considera que este trabajo ha propuesto una metodología completamente original, y que se ha demostrado efectiva, en este ámbito. Por último el trabajo aborda un tema de particular interés, como es el posible uso de los procesos desarrollados, no para construir los módulos fotovoltaicos en sí, sino para personalizarlos en forma y efectos visuales para potenciar su uso mediante elementos integrables arquitectónicamente, lo que es un ámbito de gran potencial de desarrollo futuro de las tecnologías fotovoltaicas de lámina delgada. En concreto se presentan estudios de fabricación de dispositivos integrables arquitectónicamente y plenamente funcionales no solo en dispositivos de silicio amorfo con efectos de transparencias y generación de formas libres, si no que también se incluye la posibilidad de hacer tales dispositivos con células de silicio cristalino estándar que es la tecnología fotovoltaica de mayor presencia en mercado. Es importante, además, resaltar que la realización de este trabajo ha sido posible gracias a la financiación obtenida con dos proyectos de investigación aplicada, MICROSIL (PSE-120000-2008-1) e INNDISOL (IPT-420000-2019-6), y los correspondientes al Plan Nacional de I+D+I financiados por el ministerio de Ciencia e Innovación y el Ministerio de Economía y Competitividad: CLÁSICO (ENE 2007- 67742-C04-04) y AMIC ENE2010-21384-C04-02. De hecho, y en el marco de estos proyectos, los resultados de este trabajo han ayudado a conseguir algunos de los hitos más importantes de la tecnología fotovoltaica en nuestro país en los últimos años, como fue en el marco de MICROSIL la fabricación del primer módulo de silicio amorfo con tecnología íntegramente española (hecho en colaboración con el CIEMAT), o la fabricación de los dispositivos para integración arquitectónica con geometrías libres que se describen en esta Tesis y que fueron parte de los desarrollos del proyecto INNDISOL. ABSTRACT This thesis focuses on the study of a sequence of laser-based technology and processes executed in photovoltaic devices, which are essential for the overall development of photovoltaic technologies based on thin film and, in particular, those using amorphous silicon as absorbent and subsequent applications of these technologies with high added value such as the architectural integration of such devices. In much of the PV thin film technologies, and particularly in the amorphous silicon material is deposited on a substrate in an area large enough so that it requires a process of subdivision of the device in cells of appropriate size, and subsequent serial connection to ensure nominal device power figures. This process has been industrially developed years ago, but there has been an associate scientific effort that would learn more about the effects that the processes themselves have either individually on the materials that make up the device and its final characteristics. This work, developed over years in the Laser Center of the UPM, in close collaboration with Centre for Energy and Environmental Research (CIEMAT), the University of Barcelona (UB) and the Polytechnic University of Catalonia (UPC)., Focuses precisely in a detailed study of these processes, usually they called P1, P2, P3 and P4 according to the order in which they perform on the device. This study includes both the parameters of the processes, the analysis of the effect they produce on the materials making up the device and its final photoelectric behavior as well as the potential use of EVALUATION of next-generation laser sources (ultrafast) versus standard industry today is the use of conventional laser sources temporal width in the range of nanoseconds. In particular we have studied in detail the advantages and limitations of using systems with different spectral ranges (IR, UV and VIS) and time (nanosecond and picosecond) for different configurations and technological provisions (meaning these typical configurations in substrate and superstrate such devices). Individual characterization of the processes was conducted primarily in laboratory cells specifically designed, opening new approaches and original concepts for improving laser interconnection processes and enabling the use and development of advanced techniques and characterization methods for studying the processes ablation in the different sheets making up the structure of the photovoltaic devices, so it is considered that this work has proposed a completely original methodology, which has proven effective in this area. Finally, the paper addresses a topic of particular interest, as is the possible use of lso developed processes, not to build the photovoltaic modules themselves but to customize fit and visual effects to enhance their use by integrated architectural elements, which is an area of great potential for future development of thin film photovoltaic technologies. Specifically studies manufacture of integrated architecturally and fully functional not only in amorphous silicon devices with transparency effects and generating freeform devices occur, if not also include the ability to make such devices with cells of standard crystalline silicon photovoltaic technology is more visible in the market. It is also important to note that the completion of this work has been possible thanks to the financing obtained with two applied research projects, Microsil (PSE-120000- 2008-1) and INNDISOL (IPT-420000-2019-6), and those for the National R & D funded by the Ministry of Science and Innovation and the Ministry of Economy and Competitiveness: CLASSIC (ENE 2007-67742-C04-04) and AMIC ENE2010-21384-C04- 02. In fact, within the framework of these projects, the results of this work have helped get some of the most important milestones of photovoltaic technology in our country in recent years, as it was under Microsil making the first module Amorphous silicon technology with entirely Spanish (made in collaboration with CIEMAT), or the manufacture of devices for architectural integration with free geometries that are described in this thesis and that were part of the project Inndisol developments.