4 resultados para ACID BREATH TEST
em Universidad Politécnica de Madrid
Resumo:
The aim of the present study was to examine the effect of sodium bicarbonate ingestion on consecutive "all out" sprint tests, analyzing the acid-base status and its influence on performance and perceived effort. Ten elite bicycle motocross (BMX) riders (20.7 ± 1.4 years, training experience 8-12 years) participated in this study which consisted of two trials. Each trial consisted of three consecutive Wingate tests (WTs) separated by 15 min recovery. Ninety minutes prior to exercise subjects ingested either NaHCO(3) (-) (0.3 g kg(-1) body weight) or placebo. Blood samples were collected for the assessment of blood acid-base status: bicarbonate concentration ([HCO(3) (-)]), pH, base excess (BE) and blood lactate concentration ([La(-)]). Performance variables of peak power (PP), mean power (MP), time to peak power and fatigue index were calculated for each sprint. Significant differences (p < 0.05) were observed in acid-base variables [pH before WT1: 7.47 ± 0.05 vs. 7.41 ± 0.03; [HCO(3) (-)] before WT1: 29.08 ± 2.27 vs. 22.85 ± 0.24 mmol L(-1) (bicarbonate vs. placebo conditions, respectively)], but there were not significant differences in performance variables between trials [PP WT1: 1,610 ± 373 vs. 1,599 ± 370 W; PP WT2: 1,548 ± 460 vs. 1,570 ± 428 W; PP WT3: 1,463 ± 361 vs. 1,519 ± 364 W. MP WT1: 809 ± 113 vs. 812 ± 108 W; MP WT2: 799 ± 135 vs. 799 ± 124 W; MP WT3: 762 ± 165 vs. 782 ± 118 W (bicarbonate vs. placebo conditions, respectively)]. Rating of perceived effort (RPE) was not influenced nor ratings of perceived readiness. Sodium bicarbonate ingestion modified significantly the blood acid-base balance, although the induced alkalosis did not improve the Wingate test performance, RPE and perceived readiness across three consecutive WTs in elite BMX cyclists.
Resumo:
In watermelon crops in Southeastern Spain, important thermal differences appear during the first stages of plant development that can affect them. This work shows the effect of applying jasmonic acid and benzoic acid (JA+BA), inductors of systemic acquired resistance (SAR) and induced systemic resistance (ISR), respectively, on fruit quality parameters from a crop in a greenhouse in Southeastern Spain, where crops face a remarkable abiotic stress. We assessed two treatments of JA+BA, T1 (500+500 ppm), T2 (2000+2000 ppm) and a control test using an experimental design of randomized blocks with four replications. The results obtained for the parameters assessed (ºBrix, flesh firmness, rind thickness, polar and equatorial diameter) did not show statistically significant differences. The results showed that there was no metabolic cost in the plants when applying the assessed treatments of JA+BA.
Resumo:
One of the main problems of watermelon crops in Sou theast Spain is the thermal difference because of c limatic conditions that appear during the first stages of the crop. The objective of this work was to evaluate the effect of inducing the systemic acq uired resistance (SAR) and the induced systemic resistance (ISR) through the application of jasmonic ac id (JA) and benzoic acid (BA), respectively, to counter the abiotic stress. We assessed two treatments of JA and BA, T1 (500 mg·kg-1 + 500 mg·kg -1 ) and T 2 (2000 mg·kg -1 + 2000 mg·kg -1), as well as a control test using an experimental design of randomized blocks with four replications. The results obtained for kg·m -2, fruits/m², kg/plant and fruits/plant did not show statistically significant differences. However, we obtained statistically sig nificant differences in the average fruit weight co mpared with the control test in the two experiments carried out in 2009 and 2010. The results showed that there was no metabolic cost in the plants when applying the assessed treatments of JA and BA.
Resumo:
Background: Analysis of exhaled volatile organic compounds (VOCs) in breath is an emerging approach for cancer diagnosis, but little is known about its potential use as a biomarker for colorectal cancer (CRC). We investigated whether a combination of VOCs could distinct CRC patients from healthy volunteers. Methods: In a pilot study, we prospectively analyzed breath exhalations of 38 CRC patient and 43 healthy controls all scheduled for colonoscopy, older than 50 in the average-risk category. The samples were ionized and analyzed using a Secondary ElectroSpray Ionization (SESI) coupled with a Time-of-Flight Mass Spectrometer (SESI-MS). After a minimum of 2 hours fasting, volunteers deeply exhaled into the system. Each test requires three soft exhalations and takes less than ten minutes. No breath condensate or collection are required and VOCs masses are detected in real time, also allowing for a spirometric profile to be analyzed along with the VOCs. A new sampling system precludes ambient air from entering the system, so background contamination is reduced by an overall factor of ten. Potential confounding variables from the patient or the environment that could interfere with results were analyzed. Results: 255 VOCs, with masses ranging from 30 to 431 Dalton have been identified in the exhaled breath. Using a classification technique based on the ROC curve for each VOC, a set of 9 biomarkers discriminating the presence of CRC from healthy volunteers was obtained, showing an average recognition rate of 81.94%, a sensitivity of 87.04% and specificity of 76.85%. Conclusions: A combination of cualitative and cuantitative analysis of VOCs in the exhaled breath could be a powerful diagnostic tool for average-risk CRC population. These results should be taken with precaution, as many endogenous or exogenous contaminants could interfere as confounding variables. On-line analysis with SESI-MS is less time-consuming and doesn’t need sample preparation. We are recruiting in a new pilot study including breath cleaning procedures and spirometric analysis incorporated into the postprocessing algorithms, to better control for confounding variables.